EEG-BBNet:一个使用图连接的脑生物识别混合框架

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-12-26 DOI:10.1109/LSENS.2024.3522981
Payongkit Lakhan;Nannapas Banluesombatkul;Natchaya Sricom;Phattarapong Sawangjai;Soravitt Sangnark;Tohru Yagi;Theerawit Wilaiprasitporn;Wanumaidah Saengmolee;Tulaya Limpiti
{"title":"EEG-BBNet:一个使用图连接的脑生物识别混合框架","authors":"Payongkit Lakhan;Nannapas Banluesombatkul;Natchaya Sricom;Phattarapong Sawangjai;Soravitt Sangnark;Tohru Yagi;Theerawit Wilaiprasitporn;Wanumaidah Saengmolee;Tulaya Limpiti","doi":"10.1109/LSENS.2024.3522981","DOIUrl":null,"url":null,"abstract":"Most EEG-based biometrics rely on either convolutional neural networks (CNNs) or graph convolutional neural networks (GCNNs) for personal authentication, potentially overlooking the limitations of each approach. To address this, we propose EEG-BBNet, a hybrid network that combines CNNs and GCNNs. EEG-BBNet leverages CNN's capability for automatic feature extraction and the GCNN's ability to learn connectivity patterns between EEG electrodes through graph representation. We evaluate its performance against solely CNN-based and graph-based models across three brain–computer interface tasks, focusing on daily motor and sensory activities. The results show that while EEG-BBNet with Rho index functional connectivity metric outperforms graph-based models, it initially lags behind CNN-based models. However, with additional fine-tuning, EEG-BBNet surpasses CNN-based models, achieving a correct recognition rate of approximately 90%. This improvement enables EEG-BBNet to adapt its learning in new sessions and to acquire different domain knowledge across various BCI tasks (e.g., motor imagery to steady-state visually evoked potentials), demonstrating promise for practical authentication.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 2","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG-BBNet: A Hybrid Framework for Brain Biometric Using Graph Connectivity\",\"authors\":\"Payongkit Lakhan;Nannapas Banluesombatkul;Natchaya Sricom;Phattarapong Sawangjai;Soravitt Sangnark;Tohru Yagi;Theerawit Wilaiprasitporn;Wanumaidah Saengmolee;Tulaya Limpiti\",\"doi\":\"10.1109/LSENS.2024.3522981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most EEG-based biometrics rely on either convolutional neural networks (CNNs) or graph convolutional neural networks (GCNNs) for personal authentication, potentially overlooking the limitations of each approach. To address this, we propose EEG-BBNet, a hybrid network that combines CNNs and GCNNs. EEG-BBNet leverages CNN's capability for automatic feature extraction and the GCNN's ability to learn connectivity patterns between EEG electrodes through graph representation. We evaluate its performance against solely CNN-based and graph-based models across three brain–computer interface tasks, focusing on daily motor and sensory activities. The results show that while EEG-BBNet with Rho index functional connectivity metric outperforms graph-based models, it initially lags behind CNN-based models. However, with additional fine-tuning, EEG-BBNet surpasses CNN-based models, achieving a correct recognition rate of approximately 90%. This improvement enables EEG-BBNet to adapt its learning in new sessions and to acquire different domain knowledge across various BCI tasks (e.g., motor imagery to steady-state visually evoked potentials), demonstrating promise for practical authentication.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 2\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816542/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816542/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

大多数基于脑电图的生物识别技术要么依赖卷积神经网络(cnn),要么依赖图卷积神经网络(gcnn)进行个人身份验证,这可能会忽略每种方法的局限性。为了解决这个问题,我们提出了EEG-BBNet,这是一种结合cnn和gcnn的混合网络。EEG- bbnet利用了CNN的自动特征提取能力和GCNN通过图表示学习EEG电极之间连接模式的能力。我们在三个脑机接口任务中评估了基于cnn和基于图的模型的性能,重点是日常运动和感觉活动。结果表明,虽然带有Rho指数的EEG-BBNet功能连接度量优于基于图的模型,但它最初落后于基于cnn的模型。然而,通过额外的微调,EEG-BBNet超过了基于cnn的模型,实现了大约90%的正确识别率。这种改进使EEG-BBNet能够适应新会话的学习,并在不同的脑机接口任务中获得不同的领域知识(例如,从运动图像到稳态视觉诱发电位),证明了实际认证的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EEG-BBNet: A Hybrid Framework for Brain Biometric Using Graph Connectivity
Most EEG-based biometrics rely on either convolutional neural networks (CNNs) or graph convolutional neural networks (GCNNs) for personal authentication, potentially overlooking the limitations of each approach. To address this, we propose EEG-BBNet, a hybrid network that combines CNNs and GCNNs. EEG-BBNet leverages CNN's capability for automatic feature extraction and the GCNN's ability to learn connectivity patterns between EEG electrodes through graph representation. We evaluate its performance against solely CNN-based and graph-based models across three brain–computer interface tasks, focusing on daily motor and sensory activities. The results show that while EEG-BBNet with Rho index functional connectivity metric outperforms graph-based models, it initially lags behind CNN-based models. However, with additional fine-tuning, EEG-BBNet surpasses CNN-based models, achieving a correct recognition rate of approximately 90%. This improvement enables EEG-BBNet to adapt its learning in new sessions and to acquire different domain knowledge across various BCI tasks (e.g., motor imagery to steady-state visually evoked potentials), demonstrating promise for practical authentication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Table of Contents Front Cover IEEE Sensors Council Information IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1