基于吉洪诺夫正则化和贝叶斯信息准则的城市区域层析反演

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2025-01-02 DOI:10.1109/LSENS.2024.3525127
Hui Bi;Weihao Xu;Shuang Jin;Jingjing Zhang
{"title":"基于吉洪诺夫正则化和贝叶斯信息准则的城市区域层析反演","authors":"Hui Bi;Weihao Xu;Shuang Jin;Jingjing Zhang","doi":"10.1109/LSENS.2024.3525127","DOIUrl":null,"url":null,"abstract":"As an extension of synthetic aperture radar (SAR), SAR tomography (TomoSAR) technology can reduce the overlapping in 2-D SAR image and separate multiscatterer along the elevation direction, thereby achieving the high-precision 3-D reconstruction of the surveillance area. However, in practical spaceborne TomoSAR application, the quality of 3-D imaging is restricted by the limited number of baselines and their uneven distribution. Therefore, it is necessary to find advanced signal processing technology to achieve the target 3-D recovery when the amount of data is limited. In this letter, a novel Tikhonov regularization and Bayesian information criterion (BIC)-based nonparametric iterative adaptive approach (IAA), named RIAA-BIC, is proposed and introduced to the spaceborne data processing. Compared with conventional spectral estimation, compressed sensing-based, and IAA algorithms, the proposed method incorporates the Tikhonov regularization term to avoid the problem of solving nonlinear ill-posed equation in the elevation inversion. Furthermore, the BIC model selection tool can eliminate the false or weak scatterers, thereby improving the 3-D reconstruction accuracy of the surveillance area. Experimental results based on TerraSAR-X dataset verify the proposed method.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 2","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tomographic Inversion of Urban Area via Tikhonov Regularization and Bayesian Information Criterion\",\"authors\":\"Hui Bi;Weihao Xu;Shuang Jin;Jingjing Zhang\",\"doi\":\"10.1109/LSENS.2024.3525127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an extension of synthetic aperture radar (SAR), SAR tomography (TomoSAR) technology can reduce the overlapping in 2-D SAR image and separate multiscatterer along the elevation direction, thereby achieving the high-precision 3-D reconstruction of the surveillance area. However, in practical spaceborne TomoSAR application, the quality of 3-D imaging is restricted by the limited number of baselines and their uneven distribution. Therefore, it is necessary to find advanced signal processing technology to achieve the target 3-D recovery when the amount of data is limited. In this letter, a novel Tikhonov regularization and Bayesian information criterion (BIC)-based nonparametric iterative adaptive approach (IAA), named RIAA-BIC, is proposed and introduced to the spaceborne data processing. Compared with conventional spectral estimation, compressed sensing-based, and IAA algorithms, the proposed method incorporates the Tikhonov regularization term to avoid the problem of solving nonlinear ill-posed equation in the elevation inversion. Furthermore, the BIC model selection tool can eliminate the false or weak scatterers, thereby improving the 3-D reconstruction accuracy of the surveillance area. Experimental results based on TerraSAR-X dataset verify the proposed method.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 2\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10820097/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10820097/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

作为合成孔径雷达(SAR)的延伸,SAR层析成像(TomoSAR)技术可以减少二维SAR图像中的重叠,并沿高程方向分离多散射体,从而实现监视区域的高精度三维重建。然而,在实际的星载TomoSAR应用中,三维成像质量受到基线数量有限和分布不均匀的制约。因此,在数据量有限的情况下,需要寻找先进的信号处理技术来实现目标的三维恢复。本文提出了一种基于吉洪诺夫正则化和贝叶斯信息准则(BIC)的非参数迭代自适应方法(IAA),并将其引入到星载数据处理中。与传统的光谱估计、基于压缩感知和IAA算法相比,该方法引入了Tikhonov正则化项,避免了高程反演中求解非线性不适定方程的问题。此外,BIC模型选择工具可以消除虚假或弱散射体,从而提高监视区域的三维重建精度。基于TerraSAR-X数据集的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tomographic Inversion of Urban Area via Tikhonov Regularization and Bayesian Information Criterion
As an extension of synthetic aperture radar (SAR), SAR tomography (TomoSAR) technology can reduce the overlapping in 2-D SAR image and separate multiscatterer along the elevation direction, thereby achieving the high-precision 3-D reconstruction of the surveillance area. However, in practical spaceborne TomoSAR application, the quality of 3-D imaging is restricted by the limited number of baselines and their uneven distribution. Therefore, it is necessary to find advanced signal processing technology to achieve the target 3-D recovery when the amount of data is limited. In this letter, a novel Tikhonov regularization and Bayesian information criterion (BIC)-based nonparametric iterative adaptive approach (IAA), named RIAA-BIC, is proposed and introduced to the spaceborne data processing. Compared with conventional spectral estimation, compressed sensing-based, and IAA algorithms, the proposed method incorporates the Tikhonov regularization term to avoid the problem of solving nonlinear ill-posed equation in the elevation inversion. Furthermore, the BIC model selection tool can eliminate the false or weak scatterers, thereby improving the 3-D reconstruction accuracy of the surveillance area. Experimental results based on TerraSAR-X dataset verify the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Table of Contents Front Cover IEEE Sensors Council Information IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1