采用无损光谱成像方法检测人工脱脂柠檬

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2025-01-02 DOI:10.1109/LSENS.2025.3525485
Anish Prabhu;Aparajita Naik;Sakshi Raut;Narayan Vetrekar;Raghavendra Ramachandra;R. S. Gad
{"title":"采用无损光谱成像方法检测人工脱脂柠檬","authors":"Anish Prabhu;Aparajita Naik;Sakshi Raut;Narayan Vetrekar;Raghavendra Ramachandra;R. S. Gad","doi":"10.1109/LSENS.2025.3525485","DOIUrl":null,"url":null,"abstract":"The demand for reliable methods to detect artificially degreened citrus fruits is growing in the agricultural sector. In this letter, we propose a spectral imaging-based approach to differentiate natural and artificially degreened lemons using eight narrow spectral bands within the visible and near-infrared range. To support this research, we introduce the Spectral Imaging Lemon database, consisting of 7168 images of natural and degreened lemons. Experiments were conducted across the wavelengths from 530 to 1000 nm, leveraging six feature descriptors and a support vector machine (SVM) classifier. The proposed method achieved an impressive 93.5% average classification accuracy, showcasing its effectiveness.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 2","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Employing Nondestructive Approach of Spectral Imaging to Detect Artificially Degreened Lemon\",\"authors\":\"Anish Prabhu;Aparajita Naik;Sakshi Raut;Narayan Vetrekar;Raghavendra Ramachandra;R. S. Gad\",\"doi\":\"10.1109/LSENS.2025.3525485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for reliable methods to detect artificially degreened citrus fruits is growing in the agricultural sector. In this letter, we propose a spectral imaging-based approach to differentiate natural and artificially degreened lemons using eight narrow spectral bands within the visible and near-infrared range. To support this research, we introduce the Spectral Imaging Lemon database, consisting of 7168 images of natural and degreened lemons. Experiments were conducted across the wavelengths from 530 to 1000 nm, leveraging six feature descriptors and a support vector machine (SVM) classifier. The proposed method achieved an impressive 93.5% average classification accuracy, showcasing its effectiveness.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 2\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10820373/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10820373/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在农业部门,对检测人工脱脂柑橘类水果的可靠方法的需求正在增长。在这篇文章中,我们提出了一种基于光谱成像的方法,利用可见光和近红外范围内的八个窄光谱波段来区分天然柠檬和人工柠檬。为了支持本研究,我们引入了柠檬光谱成像数据库,该数据库由7168张天然柠檬和去脂柠檬的图像组成。实验在530到1000 nm的波长范围内进行,利用六个特征描述符和一个支持向量机(SVM)分类器。该方法取得了令人印象深刻的93.5%的平均分类准确率,显示了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Employing Nondestructive Approach of Spectral Imaging to Detect Artificially Degreened Lemon
The demand for reliable methods to detect artificially degreened citrus fruits is growing in the agricultural sector. In this letter, we propose a spectral imaging-based approach to differentiate natural and artificially degreened lemons using eight narrow spectral bands within the visible and near-infrared range. To support this research, we introduce the Spectral Imaging Lemon database, consisting of 7168 images of natural and degreened lemons. Experiments were conducted across the wavelengths from 530 to 1000 nm, leveraging six feature descriptors and a support vector machine (SVM) classifier. The proposed method achieved an impressive 93.5% average classification accuracy, showcasing its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Table of Contents Front Cover IEEE Sensors Council Information IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1