Youngki Moon;Seung Ho Shin;Seokjun Jang;Duyeon Won;Sungho Kang
{"title":"一种新的基于预测的双层ECC减轻HBM中SWD误差","authors":"Youngki Moon;Seung Ho Shin;Seokjun Jang;Duyeon Won;Sungho Kang","doi":"10.1109/TVLSI.2024.3474791","DOIUrl":null,"url":null,"abstract":"Errors emerge as a major issue in the reliability of dynamic random access memory (DRAM). To enhance reliability, a two-tiered error correction code (ECC) architecture that comprises on-die ECC (OD-ECC) and system ECC (S-ECC) is adopted as a part of the standard for state-of-the-art high-bandwidth memory (HBM). However, conventional ECCs are insufficient to mitigate malfunctions of subwordline drivers (SWDs), a primary cause of errors. Moreover, the efficient co-design of two-tiered ECCs has not been sufficiently studied. To address these issues without increasing the size of check bits, this article proposes a two-tiered ECC architecture comprising an OD-ECC based on prediction and an S-ECC with data deinterleaving. The proposed OD-ECC predicts the SWD errors by leveraging the detection capabilities of two interleaved Reed-Solomon (RS) engines. In addition, the proposed S-ECC not only preserves strong error detection capability but also masks the misprediction effect of OD-ECC, where data deinterleaving renders additional errors caused by misprediction of OD-ECC to be bounded in the detectable range of the employed cyclic redundancy check (CRC). The experimental results demonstrate that the proposed two-tiered ECC can significantly enhance the error correction capability for SWD errors while maintaining the correction capability for other types of errors.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 2","pages":"488-498"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Prediction-Based Two-Tiered ECC for Mitigating SWD Errors in HBM\",\"authors\":\"Youngki Moon;Seung Ho Shin;Seokjun Jang;Duyeon Won;Sungho Kang\",\"doi\":\"10.1109/TVLSI.2024.3474791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Errors emerge as a major issue in the reliability of dynamic random access memory (DRAM). To enhance reliability, a two-tiered error correction code (ECC) architecture that comprises on-die ECC (OD-ECC) and system ECC (S-ECC) is adopted as a part of the standard for state-of-the-art high-bandwidth memory (HBM). However, conventional ECCs are insufficient to mitigate malfunctions of subwordline drivers (SWDs), a primary cause of errors. Moreover, the efficient co-design of two-tiered ECCs has not been sufficiently studied. To address these issues without increasing the size of check bits, this article proposes a two-tiered ECC architecture comprising an OD-ECC based on prediction and an S-ECC with data deinterleaving. The proposed OD-ECC predicts the SWD errors by leveraging the detection capabilities of two interleaved Reed-Solomon (RS) engines. In addition, the proposed S-ECC not only preserves strong error detection capability but also masks the misprediction effect of OD-ECC, where data deinterleaving renders additional errors caused by misprediction of OD-ECC to be bounded in the detectable range of the employed cyclic redundancy check (CRC). The experimental results demonstrate that the proposed two-tiered ECC can significantly enhance the error correction capability for SWD errors while maintaining the correction capability for other types of errors.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"33 2\",\"pages\":\"488-498\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10726615/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10726615/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Novel Prediction-Based Two-Tiered ECC for Mitigating SWD Errors in HBM
Errors emerge as a major issue in the reliability of dynamic random access memory (DRAM). To enhance reliability, a two-tiered error correction code (ECC) architecture that comprises on-die ECC (OD-ECC) and system ECC (S-ECC) is adopted as a part of the standard for state-of-the-art high-bandwidth memory (HBM). However, conventional ECCs are insufficient to mitigate malfunctions of subwordline drivers (SWDs), a primary cause of errors. Moreover, the efficient co-design of two-tiered ECCs has not been sufficiently studied. To address these issues without increasing the size of check bits, this article proposes a two-tiered ECC architecture comprising an OD-ECC based on prediction and an S-ECC with data deinterleaving. The proposed OD-ECC predicts the SWD errors by leveraging the detection capabilities of two interleaved Reed-Solomon (RS) engines. In addition, the proposed S-ECC not only preserves strong error detection capability but also masks the misprediction effect of OD-ECC, where data deinterleaving renders additional errors caused by misprediction of OD-ECC to be bounded in the detectable range of the employed cyclic redundancy check (CRC). The experimental results demonstrate that the proposed two-tiered ECC can significantly enhance the error correction capability for SWD errors while maintaining the correction capability for other types of errors.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.