与测试不可知长尾识别专用专家的原型对齐

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-12-24 DOI:10.1109/TMM.2024.3521665
Chen Guo;Weiling Chen;Aiping Huang;Tiesong Zhao
{"title":"与测试不可知长尾识别专用专家的原型对齐","authors":"Chen Guo;Weiling Chen;Aiping Huang;Tiesong Zhao","doi":"10.1109/TMM.2024.3521665","DOIUrl":null,"url":null,"abstract":"Unlike vanilla long-tailed recognition trains on imbalanced data but assumes a uniform test class distribution, test-agnostic long-tailed recognition aims to handle arbitrary test class distributions. Existing methods require prior knowledge of test sets for post-adjustment through multi-stage training, resulting in static decisions at the dataset-level. This pipeline overlooks instance diversity and is impractical in real situations. In this work, we introduce Prototype Alignment with Dedicated Experts (PADE), a one-stage framework for test-agnostic long-tailed recognition. PADE tackles unknown test distributions at the instance-level, without depending on test priors. It reformulates the task as a domain detection problem, dynamically adjusting the model for each instance. PADE comprises three main strategies: 1) parameter customization strategy for multi-experts skilled at different categories; 2) normalized target knowledge distillation for mutual guidance among experts while maintaining diversity; 3) re-balanced compactness learning with momentum prototypes, promoting instance alignment with the corresponding class centroid. We evaluate PADE on various long-tailed recognition benchmarks with diverse test distributions. The results verify its effectiveness in both vanilla and test-agnostic long-tailed recognition.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"455-465"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prototype Alignment With Dedicated Experts for Test-Agnostic Long-Tailed Recognition\",\"authors\":\"Chen Guo;Weiling Chen;Aiping Huang;Tiesong Zhao\",\"doi\":\"10.1109/TMM.2024.3521665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike vanilla long-tailed recognition trains on imbalanced data but assumes a uniform test class distribution, test-agnostic long-tailed recognition aims to handle arbitrary test class distributions. Existing methods require prior knowledge of test sets for post-adjustment through multi-stage training, resulting in static decisions at the dataset-level. This pipeline overlooks instance diversity and is impractical in real situations. In this work, we introduce Prototype Alignment with Dedicated Experts (PADE), a one-stage framework for test-agnostic long-tailed recognition. PADE tackles unknown test distributions at the instance-level, without depending on test priors. It reformulates the task as a domain detection problem, dynamically adjusting the model for each instance. PADE comprises three main strategies: 1) parameter customization strategy for multi-experts skilled at different categories; 2) normalized target knowledge distillation for mutual guidance among experts while maintaining diversity; 3) re-balanced compactness learning with momentum prototypes, promoting instance alignment with the corresponding class centroid. We evaluate PADE on various long-tailed recognition benchmarks with diverse test distributions. The results verify its effectiveness in both vanilla and test-agnostic long-tailed recognition.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"455-465\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10814099/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814099/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

与传统的长尾识别在不平衡数据上训练不同,它假设一个统一的测试类分布,而测试不可知的长尾识别旨在处理任意的测试类分布。现有的方法需要预先了解测试集,通过多阶段训练进行后调整,从而导致数据集级别的静态决策。这种管道忽略了实例的多样性,在实际情况下是不切实际的。在这项工作中,我们介绍了与专用专家的原型对齐(PADE),这是一种测试不可知的长尾识别的单阶段框架。PADE在实例级处理未知的测试发行版,而不依赖于测试先验。它将任务重新表述为一个领域检测问题,为每个实例动态调整模型。PADE包括三个主要策略:1)针对不同类别的多专家的参数定制策略;2)规范化目标知识精馏,在保持多样性的前提下,实现专家间的相互指导;3)利用动量原型重新平衡紧凑性学习,促进实例与相应类质心对齐。我们在具有不同测试分布的各种长尾识别基准上评估了PADE。结果验证了该方法在香草和测试无关的长尾识别中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prototype Alignment With Dedicated Experts for Test-Agnostic Long-Tailed Recognition
Unlike vanilla long-tailed recognition trains on imbalanced data but assumes a uniform test class distribution, test-agnostic long-tailed recognition aims to handle arbitrary test class distributions. Existing methods require prior knowledge of test sets for post-adjustment through multi-stage training, resulting in static decisions at the dataset-level. This pipeline overlooks instance diversity and is impractical in real situations. In this work, we introduce Prototype Alignment with Dedicated Experts (PADE), a one-stage framework for test-agnostic long-tailed recognition. PADE tackles unknown test distributions at the instance-level, without depending on test priors. It reformulates the task as a domain detection problem, dynamically adjusting the model for each instance. PADE comprises three main strategies: 1) parameter customization strategy for multi-experts skilled at different categories; 2) normalized target knowledge distillation for mutual guidance among experts while maintaining diversity; 3) re-balanced compactness learning with momentum prototypes, promoting instance alignment with the corresponding class centroid. We evaluate PADE on various long-tailed recognition benchmarks with diverse test distributions. The results verify its effectiveness in both vanilla and test-agnostic long-tailed recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Frequency-Guided Spatial Adaptation for Camouflaged Object Detection Cross-Scatter Sparse Dictionary Pair Learning for Cross-Domain Classification DPStyler: Dynamic PromptStyler for Source-Free Domain Generalization List of Reviewers Dual Semantic Reconstruction Network for Weakly Supervised Temporal Sentence Grounding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1