用于解释性视觉问答的逻辑集成神经推理网络

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-12-24 DOI:10.1109/TMM.2024.3521709
Dizhan Xue;Shengsheng Qian;Quan Fang;Changsheng Xu
{"title":"用于解释性视觉问答的逻辑集成神经推理网络","authors":"Dizhan Xue;Shengsheng Qian;Quan Fang;Changsheng Xu","doi":"10.1109/TMM.2024.3521709","DOIUrl":null,"url":null,"abstract":"Explanatory Visual Question Answering (EVQA) is a recently proposed multimodal reasoning task consisting of answering the visual question and generating multimodal explanations for the reasoning processes. Unlike traditional Visual Question Answering (VQA) task that only aims at predicting answers for visual questions, EVQA also aims to generate user-friendly explanations to improve the explainability and credibility of reasoning models. To date, existing methods for VQA and EVQA ignore the prompt in the question and enforce the model to predict the probabilities of all answers. Moreover, existing EVQA methods ignore the complex relationships among question words, visual regions, and explanation tokens. Therefore, in this work, we propose a Logic Integrated Neural Inference Network (LININ) to restrict the range of candidate answers based on first-order-logic (FOL) and capture cross-modal relationships to generate rational explanations. Firstly, we design a FOL-based question analysis program to fetch a small number of candidate answers. Secondly, we utilize a multimodal transformer encoder to extract visual and question features, and conduct the prediction on candidate answers. Finally, we design a multimodal explanation transformer to construct cross-modal relationships and generate rational explanations. Comprehensive experiments on benchmark datasets demonstrate the superiority of LININ compared with the state-of-the-art methods for EVQA.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"16-27"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LININ: Logic Integrated Neural Inference Network for Explanatory Visual Question Answering\",\"authors\":\"Dizhan Xue;Shengsheng Qian;Quan Fang;Changsheng Xu\",\"doi\":\"10.1109/TMM.2024.3521709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explanatory Visual Question Answering (EVQA) is a recently proposed multimodal reasoning task consisting of answering the visual question and generating multimodal explanations for the reasoning processes. Unlike traditional Visual Question Answering (VQA) task that only aims at predicting answers for visual questions, EVQA also aims to generate user-friendly explanations to improve the explainability and credibility of reasoning models. To date, existing methods for VQA and EVQA ignore the prompt in the question and enforce the model to predict the probabilities of all answers. Moreover, existing EVQA methods ignore the complex relationships among question words, visual regions, and explanation tokens. Therefore, in this work, we propose a Logic Integrated Neural Inference Network (LININ) to restrict the range of candidate answers based on first-order-logic (FOL) and capture cross-modal relationships to generate rational explanations. Firstly, we design a FOL-based question analysis program to fetch a small number of candidate answers. Secondly, we utilize a multimodal transformer encoder to extract visual and question features, and conduct the prediction on candidate answers. Finally, we design a multimodal explanation transformer to construct cross-modal relationships and generate rational explanations. Comprehensive experiments on benchmark datasets demonstrate the superiority of LININ compared with the state-of-the-art methods for EVQA.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"16-27\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10814657/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814657/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

解释性视觉问答(EVQA)是最近提出的一种多模态推理任务,由回答视觉问题和生成推理过程的多模态解释组成。与传统的视觉问题回答(VQA)任务不同,EVQA还旨在生成用户友好的解释,以提高推理模型的可解释性和可信度。到目前为止,VQA和EVQA的现有方法忽略了问题中的提示,并强制模型预测所有答案的概率。此外,现有的EVQA方法忽略了问题词、视觉区域和解释令牌之间的复杂关系。因此,在这项工作中,我们提出了一个逻辑集成神经推理网络(LININ)来限制基于一阶逻辑(FOL)的候选答案的范围,并捕获跨模态关系以生成合理的解释。首先,我们设计了一个基于foll的问题分析程序来获取少量的候选答案。其次,我们利用多模态变压器编码器提取视觉特征和问题特征,并对候选答案进行预测。最后,我们设计了一个多模态解释转换器来构建跨模态关系并生成合理的解释。在基准数据集上的综合实验证明了LININ算法与现有EVQA方法相比的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LININ: Logic Integrated Neural Inference Network for Explanatory Visual Question Answering
Explanatory Visual Question Answering (EVQA) is a recently proposed multimodal reasoning task consisting of answering the visual question and generating multimodal explanations for the reasoning processes. Unlike traditional Visual Question Answering (VQA) task that only aims at predicting answers for visual questions, EVQA also aims to generate user-friendly explanations to improve the explainability and credibility of reasoning models. To date, existing methods for VQA and EVQA ignore the prompt in the question and enforce the model to predict the probabilities of all answers. Moreover, existing EVQA methods ignore the complex relationships among question words, visual regions, and explanation tokens. Therefore, in this work, we propose a Logic Integrated Neural Inference Network (LININ) to restrict the range of candidate answers based on first-order-logic (FOL) and capture cross-modal relationships to generate rational explanations. Firstly, we design a FOL-based question analysis program to fetch a small number of candidate answers. Secondly, we utilize a multimodal transformer encoder to extract visual and question features, and conduct the prediction on candidate answers. Finally, we design a multimodal explanation transformer to construct cross-modal relationships and generate rational explanations. Comprehensive experiments on benchmark datasets demonstrate the superiority of LININ compared with the state-of-the-art methods for EVQA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Frequency-Guided Spatial Adaptation for Camouflaged Object Detection Cross-Scatter Sparse Dictionary Pair Learning for Cross-Domain Classification DPStyler: Dynamic PromptStyler for Source-Free Domain Generalization List of Reviewers Dual Semantic Reconstruction Network for Weakly Supervised Temporal Sentence Grounding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1