{"title":"区域到边界渐进式伪装目标探测网络","authors":"Guanghui Yue;Shangjie Wu;Tianwei Zhou;Gang Li;Jie Du;Yu Luo;Qiuping Jiang","doi":"10.1109/TMM.2024.3521761","DOIUrl":null,"url":null,"abstract":"Camouflaged object detection (COD) aims to segment targeted objects that have similar colors, textures, or shapes to their background environment. Due to the limited ability in distinguishing highly similar patterns, existing COD methods usually produce inaccurate predictions, especially around the boundary areas, when coping with complex scenes. This paper proposes a Progressive Region-to-Boundary Exploration Network (PRBE-Net) to accurately detect camouflaged objects. PRBE-Net follows an encoder-decoder framework and includes three key modules. Specifically, firstly, both high-level and low-level features of the encoder are integrated by a region and boundary exploration module to explore their complementary information for extracting the object's coarse region and fine boundary cues simultaneously. Secondly, taking the region cues as the guidance information, a Region Enhancement (RE) module is used to adaptively localize and enhance the region information at each layer of the encoder. Subsequently, considering that camouflaged objects usually have blurry boundaries, a Boundary Refinement (BR) decoder is used after the RE module to better detect the boundary areas with the assistance of boundary cues. Through top-down deep supervision, PRBE-Net can progressively refine the prediction. Extensive experiments on four datasets indicate that our PRBE-Net achieves superior results over 21 state-of-the-art COD methods. Additionally, it also shows good results on polyp segmentation, a COD-related task in the medical field.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"236-248"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive Region-to-Boundary Exploration Network for Camouflaged Object Detection\",\"authors\":\"Guanghui Yue;Shangjie Wu;Tianwei Zhou;Gang Li;Jie Du;Yu Luo;Qiuping Jiang\",\"doi\":\"10.1109/TMM.2024.3521761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Camouflaged object detection (COD) aims to segment targeted objects that have similar colors, textures, or shapes to their background environment. Due to the limited ability in distinguishing highly similar patterns, existing COD methods usually produce inaccurate predictions, especially around the boundary areas, when coping with complex scenes. This paper proposes a Progressive Region-to-Boundary Exploration Network (PRBE-Net) to accurately detect camouflaged objects. PRBE-Net follows an encoder-decoder framework and includes three key modules. Specifically, firstly, both high-level and low-level features of the encoder are integrated by a region and boundary exploration module to explore their complementary information for extracting the object's coarse region and fine boundary cues simultaneously. Secondly, taking the region cues as the guidance information, a Region Enhancement (RE) module is used to adaptively localize and enhance the region information at each layer of the encoder. Subsequently, considering that camouflaged objects usually have blurry boundaries, a Boundary Refinement (BR) decoder is used after the RE module to better detect the boundary areas with the assistance of boundary cues. Through top-down deep supervision, PRBE-Net can progressively refine the prediction. Extensive experiments on four datasets indicate that our PRBE-Net achieves superior results over 21 state-of-the-art COD methods. Additionally, it also shows good results on polyp segmentation, a COD-related task in the medical field.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"236-248\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10814101/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10814101/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Progressive Region-to-Boundary Exploration Network for Camouflaged Object Detection
Camouflaged object detection (COD) aims to segment targeted objects that have similar colors, textures, or shapes to their background environment. Due to the limited ability in distinguishing highly similar patterns, existing COD methods usually produce inaccurate predictions, especially around the boundary areas, when coping with complex scenes. This paper proposes a Progressive Region-to-Boundary Exploration Network (PRBE-Net) to accurately detect camouflaged objects. PRBE-Net follows an encoder-decoder framework and includes three key modules. Specifically, firstly, both high-level and low-level features of the encoder are integrated by a region and boundary exploration module to explore their complementary information for extracting the object's coarse region and fine boundary cues simultaneously. Secondly, taking the region cues as the guidance information, a Region Enhancement (RE) module is used to adaptively localize and enhance the region information at each layer of the encoder. Subsequently, considering that camouflaged objects usually have blurry boundaries, a Boundary Refinement (BR) decoder is used after the RE module to better detect the boundary areas with the assistance of boundary cues. Through top-down deep supervision, PRBE-Net can progressively refine the prediction. Extensive experiments on four datasets indicate that our PRBE-Net achieves superior results over 21 state-of-the-art COD methods. Additionally, it also shows good results on polyp segmentation, a COD-related task in the medical field.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.