{"title":"WHANet:基于小波的RGB输入光谱超分辨率混合不对称网络","authors":"Nan Wang;Shaohui Mei;Yi Wang;Yifan Zhang;Duo Zhan","doi":"10.1109/TMM.2024.3521713","DOIUrl":null,"url":null,"abstract":"The reconstruction from three to dozens of spectral bands, known as spectral super resolution (SSR) has achieved remarkable progress with the continuous development of deep learning. However, the reconstructed hyperspectral images (HSIs) still suffer from the spatial degeneration due to the insufficient retention of high-frequency (HF) information during the SSR process. To remedy this issue, a novel Wavelet-based Hybrid Asymmetric Network (WHANet) is proposed to establish a RGB-to-HSI translation in wavelet domain, thus reserving and emphasizing the HF features in hyperspectral space. Basically, the backbone is designed in a hybrid asymmetric structure that learns the exact representations of decomposed wavelet coefficients in hyperspectral domain in a parallel way. Innovatively, a CNN-based HF reconstruction module (HFRM) and a transformer-based low frequency (LF) reconstruction module (LFRM) are delicately devised to perform the SSR process individually, which are able to process the discriminative wavelet coefficients contrapuntally. Furthermore, a hybrid loss function incorporated with the Fast Fourier loss (FFL) is proposed to directly regularize and emphasis the missing HF components. Eventually, experimental results over three benchmark datasets and one remote sensing dataset demonstrate that our WHANet is able to reach the state-of-the-art performance quantitatively and qualitatively.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"414-428"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WHANet:Wavelet-Based Hybrid Asymmetric Network for Spectral Super-Resolution From RGB Inputs\",\"authors\":\"Nan Wang;Shaohui Mei;Yi Wang;Yifan Zhang;Duo Zhan\",\"doi\":\"10.1109/TMM.2024.3521713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reconstruction from three to dozens of spectral bands, known as spectral super resolution (SSR) has achieved remarkable progress with the continuous development of deep learning. However, the reconstructed hyperspectral images (HSIs) still suffer from the spatial degeneration due to the insufficient retention of high-frequency (HF) information during the SSR process. To remedy this issue, a novel Wavelet-based Hybrid Asymmetric Network (WHANet) is proposed to establish a RGB-to-HSI translation in wavelet domain, thus reserving and emphasizing the HF features in hyperspectral space. Basically, the backbone is designed in a hybrid asymmetric structure that learns the exact representations of decomposed wavelet coefficients in hyperspectral domain in a parallel way. Innovatively, a CNN-based HF reconstruction module (HFRM) and a transformer-based low frequency (LF) reconstruction module (LFRM) are delicately devised to perform the SSR process individually, which are able to process the discriminative wavelet coefficients contrapuntally. Furthermore, a hybrid loss function incorporated with the Fast Fourier loss (FFL) is proposed to directly regularize and emphasis the missing HF components. Eventually, experimental results over three benchmark datasets and one remote sensing dataset demonstrate that our WHANet is able to reach the state-of-the-art performance quantitatively and qualitatively.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"414-428\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10812768/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10812768/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
WHANet:Wavelet-Based Hybrid Asymmetric Network for Spectral Super-Resolution From RGB Inputs
The reconstruction from three to dozens of spectral bands, known as spectral super resolution (SSR) has achieved remarkable progress with the continuous development of deep learning. However, the reconstructed hyperspectral images (HSIs) still suffer from the spatial degeneration due to the insufficient retention of high-frequency (HF) information during the SSR process. To remedy this issue, a novel Wavelet-based Hybrid Asymmetric Network (WHANet) is proposed to establish a RGB-to-HSI translation in wavelet domain, thus reserving and emphasizing the HF features in hyperspectral space. Basically, the backbone is designed in a hybrid asymmetric structure that learns the exact representations of decomposed wavelet coefficients in hyperspectral domain in a parallel way. Innovatively, a CNN-based HF reconstruction module (HFRM) and a transformer-based low frequency (LF) reconstruction module (LFRM) are delicately devised to perform the SSR process individually, which are able to process the discriminative wavelet coefficients contrapuntally. Furthermore, a hybrid loss function incorporated with the Fast Fourier loss (FFL) is proposed to directly regularize and emphasis the missing HF components. Eventually, experimental results over three benchmark datasets and one remote sensing dataset demonstrate that our WHANet is able to reach the state-of-the-art performance quantitatively and qualitatively.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.