表面活性剂影响的生物吸附是一种可持续有效的消除环境污染物的方法

Subhadeep Biswas, Ashish Kumar Nayak and Anjali Pal
{"title":"表面活性剂影响的生物吸附是一种可持续有效的消除环境污染物的方法","authors":"Subhadeep Biswas, Ashish Kumar Nayak and Anjali Pal","doi":"10.1039/D4SU00574K","DOIUrl":null,"url":null,"abstract":"<p >The biosorption process offers a sustainable and promising solution for treating wastewater contaminated with industrial effluents containing dyes, heavy metals, personal care products, pharmaceuticals, and phenolic compounds. Different types of biomass, such as agricultural waste products, animal waste, biopolymers, <em>etc.</em>, have been reported in contemporary times as environmentally friendly, low-cost, and efficient materials for treating different categories of wastewater. Many researchers often utilized surfactants to modify the surface properties of these biomaterials to enhance their removal efficiency. A considerable amount of research conducted on surfactant-modified biomaterials (SMBs) for treating wastewater in modern times has prompted us to prepare a review article on the same. The main aim of the current article is to focus on the recent developments that took place in this field, the behavior of different surfactants towards different categories of pollutants, and explore underlying mechanisms in depth. Notable advancements, such as the practice of new optimization techniques and the deployment of SMBs for real wastewater decontamination, have also been highlighted. The emergence of SMBs in accordance with the United Nations Sustainable Development Goals (UNSDGs) has been justified. Several current hindrances, along with future outlooks, are briefly presented before the conclusion. This review aims to be highly relevant in the present times, encouraging scientists and engineers to explore novel SMBs for industrial effluent clean-up programs.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 1","pages":" 112-133"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00574k?page=search","citationCount":"0","resultStr":"{\"title\":\"Surfactant-influenced biosorption as a sustainable and effective way for the eradication of environmental pollutants: a review\",\"authors\":\"Subhadeep Biswas, Ashish Kumar Nayak and Anjali Pal\",\"doi\":\"10.1039/D4SU00574K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The biosorption process offers a sustainable and promising solution for treating wastewater contaminated with industrial effluents containing dyes, heavy metals, personal care products, pharmaceuticals, and phenolic compounds. Different types of biomass, such as agricultural waste products, animal waste, biopolymers, <em>etc.</em>, have been reported in contemporary times as environmentally friendly, low-cost, and efficient materials for treating different categories of wastewater. Many researchers often utilized surfactants to modify the surface properties of these biomaterials to enhance their removal efficiency. A considerable amount of research conducted on surfactant-modified biomaterials (SMBs) for treating wastewater in modern times has prompted us to prepare a review article on the same. The main aim of the current article is to focus on the recent developments that took place in this field, the behavior of different surfactants towards different categories of pollutants, and explore underlying mechanisms in depth. Notable advancements, such as the practice of new optimization techniques and the deployment of SMBs for real wastewater decontamination, have also been highlighted. The emergence of SMBs in accordance with the United Nations Sustainable Development Goals (UNSDGs) has been justified. Several current hindrances, along with future outlooks, are briefly presented before the conclusion. This review aims to be highly relevant in the present times, encouraging scientists and engineers to explore novel SMBs for industrial effluent clean-up programs.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 1\",\"pages\":\" 112-133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00574k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00574k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00574k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物吸附工艺为处理含有染料、重金属、个人护理产品、药品和酚类化合物的工业废水提供了一种可持续的、有前途的解决方案。不同类型的生物质,如农业废弃物、动物废弃物、生物聚合物等,已被报道为环保、低成本和高效的材料,用于处理不同类别的废水。许多研究人员经常使用表面活性剂来修饰这些生物材料的表面特性,以提高它们的去除效率。近年来对表面活性剂改性生物材料(SMBs)处理废水进行了大量的研究,这促使我们准备了一篇综述文章。本文的主要目的是关注该领域的最新进展,不同表面活性剂对不同类别污染物的行为,并深入探讨其潜在机制。值得注意的进展,如新的优化技术的实践和部署中小型企业进行真正的废水净化,也得到了强调。根据联合国可持续发展目标(UNSDGs),中小企业的出现是有道理的。在结论之前简要介绍了目前的几个障碍以及对未来的展望。这篇综述的目的是在当今时代高度相关,鼓励科学家和工程师探索新的中小型企业用于工业废水净化计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surfactant-influenced biosorption as a sustainable and effective way for the eradication of environmental pollutants: a review

The biosorption process offers a sustainable and promising solution for treating wastewater contaminated with industrial effluents containing dyes, heavy metals, personal care products, pharmaceuticals, and phenolic compounds. Different types of biomass, such as agricultural waste products, animal waste, biopolymers, etc., have been reported in contemporary times as environmentally friendly, low-cost, and efficient materials for treating different categories of wastewater. Many researchers often utilized surfactants to modify the surface properties of these biomaterials to enhance their removal efficiency. A considerable amount of research conducted on surfactant-modified biomaterials (SMBs) for treating wastewater in modern times has prompted us to prepare a review article on the same. The main aim of the current article is to focus on the recent developments that took place in this field, the behavior of different surfactants towards different categories of pollutants, and explore underlying mechanisms in depth. Notable advancements, such as the practice of new optimization techniques and the deployment of SMBs for real wastewater decontamination, have also been highlighted. The emergence of SMBs in accordance with the United Nations Sustainable Development Goals (UNSDGs) has been justified. Several current hindrances, along with future outlooks, are briefly presented before the conclusion. This review aims to be highly relevant in the present times, encouraging scientists and engineers to explore novel SMBs for industrial effluent clean-up programs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Inside back cover Back cover Afterglow quenching in plasma-based dry reforming of methane: a detailed analysis of the post-plasma chemistry via kinetic modelling. Showcasing the technological advancements of carbon dioxide conversion: a pathway to a sustainable future From lead–acid batteries to perovskite solar cells – efficient recycling of Pb-containing materials†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1