检测肠贾第虫囊蛋白†的ssDNA适体筛选及适体电化学生物传感器的构建

IF 3.5 Q2 CHEMISTRY, ANALYTICAL Sensors & diagnostics Pub Date : 2024-12-12 DOI:10.1039/D4SD00296B
Mohammed Alhindawi, Amina Rhouati, Rahmah Noordin, Dana Cialla-May, Jürgen Popp and Mohammed Zourob
{"title":"检测肠贾第虫囊蛋白†的ssDNA适体筛选及适体电化学生物传感器的构建","authors":"Mohammed Alhindawi, Amina Rhouati, Rahmah Noordin, Dana Cialla-May, Jürgen Popp and Mohammed Zourob","doi":"10.1039/D4SD00296B","DOIUrl":null,"url":null,"abstract":"<p >\r\n <em>Giardia intestinalis</em>, an intestinal protozoan parasite, is one of the potentially severe parasitic infections, especially in children. Rapid and simple diagnostic tools are highly desired to prevent the potential outbreak of <em>G. intestinalis</em> infection. The life cycle of Giardia species is quite simple and consists of trophozoite and cystic forms. This report presents the selection of ssDNA aptamers with high binding affinity to a <em>G. intestinalis</em> cyst recombinant protein using the SELEX process (systematic evolution of ligands by exponential enrichment). The process is based on incubating a random DNA library with the targeted protein, and the bound sequences are recovered and amplified by polymerase chain reaction (PCR). The generated pool of aptamer sequences is used in the subsequent selection round. After ten selection cycles, three sequences were isolated with low dissociation constants (<em>K</em><small><sub>d</sub></small>) of 7.98, 21.02, and 21.86 nM. Subsequently, the aptamer with the best affinity was integrated into a label-free electrochemical biosensor to detect <em>G. intestinalis</em> cyst protein. The developed aptasensor accurately detected the <em>G. intestinalis</em> recombinant cyst protein within the range of 0.1 pg mL<small><sup>−1</sup></small> to 1000 ng mL<small><sup>−1</sup></small>, and a low detection limit of 0.0026 pg mL<small><sup>−1</sup></small>. Furthermore, a selectivity study showed insignificant cross-reactivity against other proteins such as bovine serum albumin and globulin, and no reactivity against <em>G. intestinalis</em> trophozoite recombinant protein. Finally, the aptasensor was tested using <em>G. intestinalis</em>-spiked tap water samples and showed good recovery rates.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 1","pages":" 82-89"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d4sd00296b?page=search","citationCount":"0","resultStr":"{\"title\":\"Selection of ssDNA aptamers and construction of an aptameric electrochemical biosensor for detecting Giardia intestinalis cyst protein†\",\"authors\":\"Mohammed Alhindawi, Amina Rhouati, Rahmah Noordin, Dana Cialla-May, Jürgen Popp and Mohammed Zourob\",\"doi\":\"10.1039/D4SD00296B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >\\r\\n <em>Giardia intestinalis</em>, an intestinal protozoan parasite, is one of the potentially severe parasitic infections, especially in children. Rapid and simple diagnostic tools are highly desired to prevent the potential outbreak of <em>G. intestinalis</em> infection. The life cycle of Giardia species is quite simple and consists of trophozoite and cystic forms. This report presents the selection of ssDNA aptamers with high binding affinity to a <em>G. intestinalis</em> cyst recombinant protein using the SELEX process (systematic evolution of ligands by exponential enrichment). The process is based on incubating a random DNA library with the targeted protein, and the bound sequences are recovered and amplified by polymerase chain reaction (PCR). The generated pool of aptamer sequences is used in the subsequent selection round. After ten selection cycles, three sequences were isolated with low dissociation constants (<em>K</em><small><sub>d</sub></small>) of 7.98, 21.02, and 21.86 nM. Subsequently, the aptamer with the best affinity was integrated into a label-free electrochemical biosensor to detect <em>G. intestinalis</em> cyst protein. The developed aptasensor accurately detected the <em>G. intestinalis</em> recombinant cyst protein within the range of 0.1 pg mL<small><sup>−1</sup></small> to 1000 ng mL<small><sup>−1</sup></small>, and a low detection limit of 0.0026 pg mL<small><sup>−1</sup></small>. Furthermore, a selectivity study showed insignificant cross-reactivity against other proteins such as bovine serum albumin and globulin, and no reactivity against <em>G. intestinalis</em> trophozoite recombinant protein. Finally, the aptasensor was tested using <em>G. intestinalis</em>-spiked tap water samples and showed good recovery rates.</p>\",\"PeriodicalId\":74786,\"journal\":{\"name\":\"Sensors & diagnostics\",\"volume\":\" 1\",\"pages\":\" 82-89\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d4sd00296b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors & diagnostics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/sd/d4sd00296b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sd/d4sd00296b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

肠贾第虫是一种肠道原生动物寄生虫,是一种潜在的严重寄生虫感染,特别是在儿童中。快速和简单的诊断工具是非常需要的,以防止潜在的爆发大肠杆菌感染。贾第鞭毛虫的生命周期非常简单,由滋养体和囊状体组成。本报告介绍了利用SELEX过程(配体的系统进化指数富集)选择与G. ninteinalis囊肿重组蛋白具有高结合亲和力的ssDNA适配体。该过程基于与目标蛋白一起培养随机DNA文库,结合序列通过聚合酶链反应(PCR)恢复和扩增。生成的适体序列池将用于随后的选择轮。经过10个选择循环,分离得到3个解离常数(Kd)分别为7.98、21.02和21.86 nM的序列。随后,将亲和性最佳的适体整合到无标记电化学生物传感器中,用于检测大肠杆菌囊肿蛋白。该传感器在0.1 pg mL - 1 ~ 1000 ng mL - 1范围内准确检测出重组肠芽孢杆菌囊肿蛋白,检出限低至0.0026 pg mL - 1。此外,选择性研究表明,该蛋白对牛血清白蛋白和球蛋白等蛋白的交叉反应性不显著,对大肠杆菌滋养体重组蛋白的交叉反应性不显著。最后,用添加了大肠杆菌的自来水样品对该传感器进行了测试,结果表明该传感器具有良好的回收率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selection of ssDNA aptamers and construction of an aptameric electrochemical biosensor for detecting Giardia intestinalis cyst protein†

Giardia intestinalis, an intestinal protozoan parasite, is one of the potentially severe parasitic infections, especially in children. Rapid and simple diagnostic tools are highly desired to prevent the potential outbreak of G. intestinalis infection. The life cycle of Giardia species is quite simple and consists of trophozoite and cystic forms. This report presents the selection of ssDNA aptamers with high binding affinity to a G. intestinalis cyst recombinant protein using the SELEX process (systematic evolution of ligands by exponential enrichment). The process is based on incubating a random DNA library with the targeted protein, and the bound sequences are recovered and amplified by polymerase chain reaction (PCR). The generated pool of aptamer sequences is used in the subsequent selection round. After ten selection cycles, three sequences were isolated with low dissociation constants (Kd) of 7.98, 21.02, and 21.86 nM. Subsequently, the aptamer with the best affinity was integrated into a label-free electrochemical biosensor to detect G. intestinalis cyst protein. The developed aptasensor accurately detected the G. intestinalis recombinant cyst protein within the range of 0.1 pg mL−1 to 1000 ng mL−1, and a low detection limit of 0.0026 pg mL−1. Furthermore, a selectivity study showed insignificant cross-reactivity against other proteins such as bovine serum albumin and globulin, and no reactivity against G. intestinalis trophozoite recombinant protein. Finally, the aptasensor was tested using G. intestinalis-spiked tap water samples and showed good recovery rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
Back cover Rapid and automated interpretation of CRISPR-Cas13-based lateral flow assay test results using machine learning. Selection of ssDNA aptamers and construction of an aptameric electrochemical biosensor for detecting Giardia intestinalis cyst protein† Expression of concern: Sensing of COVID-19 spike protein in nasopharyngeal samples using a portable surface plasmon resonance diagnostic system Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1