Lihong Chang, Simiao Cheng, Jiansheng Zhang, Wenshuai Wang
{"title":"非完美界面多铁纳米纤维复合材料的有效磁电弹性模量","authors":"Lihong Chang, Simiao Cheng, Jiansheng Zhang, Wenshuai Wang","doi":"10.1007/s00707-024-04168-7","DOIUrl":null,"url":null,"abstract":"<div><p>As an important class of functional materials, the multiferroic piezoelectric/piezomagnetic nanocomposites are widely used in sensors and actuators of advanced functional devices. The interface effects have become a key issue in designing and regulating the physical properties of such nanocomposites. This paper investigates the magneto-electro-elastic (MEE) responses for multiferroic fibrous nanocomposites with imperfectly bonded interface under far-field anti-plane shear and in-plane electric and magnetic loadings. On this basis, the analytical solutions of the effective MEE moduli of the multiferroic nanocomposites are obtained by using a generalized self-consistent method combined with the complex variable method. The present analytical solutions considering the nanointerface stresses and imperfect interface effect are verified by comparing with existing analytical solutions for simplified problem. Numerical analysis is conducted for different types of composite materials, and the effect of nanointerface stresses, imperfect interface parameters and volume fraction on the six components of MEE effective modulus is discussed in detail. The proposed theoretical estimation of effective moduli has certain theoretical value for the design and optimization of multiferroic nanocomposites.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"236 1","pages":"563 - 584"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective magneto-electro-elastic moduli for multiferroic nanofibrous composites with imperfect interface\",\"authors\":\"Lihong Chang, Simiao Cheng, Jiansheng Zhang, Wenshuai Wang\",\"doi\":\"10.1007/s00707-024-04168-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As an important class of functional materials, the multiferroic piezoelectric/piezomagnetic nanocomposites are widely used in sensors and actuators of advanced functional devices. The interface effects have become a key issue in designing and regulating the physical properties of such nanocomposites. This paper investigates the magneto-electro-elastic (MEE) responses for multiferroic fibrous nanocomposites with imperfectly bonded interface under far-field anti-plane shear and in-plane electric and magnetic loadings. On this basis, the analytical solutions of the effective MEE moduli of the multiferroic nanocomposites are obtained by using a generalized self-consistent method combined with the complex variable method. The present analytical solutions considering the nanointerface stresses and imperfect interface effect are verified by comparing with existing analytical solutions for simplified problem. Numerical analysis is conducted for different types of composite materials, and the effect of nanointerface stresses, imperfect interface parameters and volume fraction on the six components of MEE effective modulus is discussed in detail. The proposed theoretical estimation of effective moduli has certain theoretical value for the design and optimization of multiferroic nanocomposites.</p></div>\",\"PeriodicalId\":456,\"journal\":{\"name\":\"Acta Mechanica\",\"volume\":\"236 1\",\"pages\":\"563 - 584\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00707-024-04168-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-024-04168-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Effective magneto-electro-elastic moduli for multiferroic nanofibrous composites with imperfect interface
As an important class of functional materials, the multiferroic piezoelectric/piezomagnetic nanocomposites are widely used in sensors and actuators of advanced functional devices. The interface effects have become a key issue in designing and regulating the physical properties of such nanocomposites. This paper investigates the magneto-electro-elastic (MEE) responses for multiferroic fibrous nanocomposites with imperfectly bonded interface under far-field anti-plane shear and in-plane electric and magnetic loadings. On this basis, the analytical solutions of the effective MEE moduli of the multiferroic nanocomposites are obtained by using a generalized self-consistent method combined with the complex variable method. The present analytical solutions considering the nanointerface stresses and imperfect interface effect are verified by comparing with existing analytical solutions for simplified problem. Numerical analysis is conducted for different types of composite materials, and the effect of nanointerface stresses, imperfect interface parameters and volume fraction on the six components of MEE effective modulus is discussed in detail. The proposed theoretical estimation of effective moduli has certain theoretical value for the design and optimization of multiferroic nanocomposites.
期刊介绍:
Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.