{"title":"具有提高辐射复合效率的硅/氮化镓隧道结发光二极管","authors":"Kwangeun Kim","doi":"10.1007/s40042-024-01252-y","DOIUrl":null,"url":null,"abstract":"<div><p>Improving carrier injection for radiative recombination in GaN light-emitting diodes (LEDs) has been a major focus for several decades. In this study, the performance of GaN LEDs was enhanced through the construction of an Si/GaN tunnel junction (TJ) via nanomembrane (NM) stacking. The n + Si nanomembrane was transfer printed onto the p + GaN layer, resulting in an n + Si/p + GaN TJ on top of the GaN epi-structure. The radiative recombination of electron–hole pairs was enhanced by the tunneling of carriers across the Si/GaN TJ into the InGaN/GaN multi-quantum wells. The improved hole injection was elucidated through the energy band diagram of the Si/GaN TJ. The increased number of injected holes in the stacked Si/GaN TJ LED leads to enhanced radiative recombination, resulting in greater output power and external quantum efficiency (EQE). Specifically, the light output power improved by 96% at 30 A/cm<sup>2</sup>, and the peak EQE increased by 36% due to the formation of the stacked Si/GaN TJ on the LED. These findings can be applied to the manufacturing of electronic devices, where balancing carrier generation and injection is crucial for operational efficiency.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"86 2","pages":"126 - 131"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stacking-enabled Si/GaN tunnel junction light-emitting diodes with improved radiative recombination efficiency\",\"authors\":\"Kwangeun Kim\",\"doi\":\"10.1007/s40042-024-01252-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Improving carrier injection for radiative recombination in GaN light-emitting diodes (LEDs) has been a major focus for several decades. In this study, the performance of GaN LEDs was enhanced through the construction of an Si/GaN tunnel junction (TJ) via nanomembrane (NM) stacking. The n + Si nanomembrane was transfer printed onto the p + GaN layer, resulting in an n + Si/p + GaN TJ on top of the GaN epi-structure. The radiative recombination of electron–hole pairs was enhanced by the tunneling of carriers across the Si/GaN TJ into the InGaN/GaN multi-quantum wells. The improved hole injection was elucidated through the energy band diagram of the Si/GaN TJ. The increased number of injected holes in the stacked Si/GaN TJ LED leads to enhanced radiative recombination, resulting in greater output power and external quantum efficiency (EQE). Specifically, the light output power improved by 96% at 30 A/cm<sup>2</sup>, and the peak EQE increased by 36% due to the formation of the stacked Si/GaN TJ on the LED. These findings can be applied to the manufacturing of electronic devices, where balancing carrier generation and injection is crucial for operational efficiency.</p></div>\",\"PeriodicalId\":677,\"journal\":{\"name\":\"Journal of the Korean Physical Society\",\"volume\":\"86 2\",\"pages\":\"126 - 131\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Physical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40042-024-01252-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01252-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving carrier injection for radiative recombination in GaN light-emitting diodes (LEDs) has been a major focus for several decades. In this study, the performance of GaN LEDs was enhanced through the construction of an Si/GaN tunnel junction (TJ) via nanomembrane (NM) stacking. The n + Si nanomembrane was transfer printed onto the p + GaN layer, resulting in an n + Si/p + GaN TJ on top of the GaN epi-structure. The radiative recombination of electron–hole pairs was enhanced by the tunneling of carriers across the Si/GaN TJ into the InGaN/GaN multi-quantum wells. The improved hole injection was elucidated through the energy band diagram of the Si/GaN TJ. The increased number of injected holes in the stacked Si/GaN TJ LED leads to enhanced radiative recombination, resulting in greater output power and external quantum efficiency (EQE). Specifically, the light output power improved by 96% at 30 A/cm2, and the peak EQE increased by 36% due to the formation of the stacked Si/GaN TJ on the LED. These findings can be applied to the manufacturing of electronic devices, where balancing carrier generation and injection is crucial for operational efficiency.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.