Roberto Pacciani, Yuan Fang, Leonardo Metti, Michele Marconcini, Richard Sandberg
{"title":"层流动能模型的重新表述以实现多模态跃迁预测","authors":"Roberto Pacciani, Yuan Fang, Leonardo Metti, Michele Marconcini, Richard Sandberg","doi":"10.1007/s10494-024-00590-y","DOIUrl":null,"url":null,"abstract":"<div><p>The paper describes the development of a novel transition/turbulence model based on the laminar kinetic energy concept. The model is intended as a base framework for data-driven improvements. Starting from a previously developed framework, mainly aimed at separated-flow transition predictions, suitable terms for model generalization are identified and reformulated for handling different transition modes, namely bypass and separated-flow modes. The ideology for the definition of new terms has its roots in mixing phenomenological and correlation-based arguments, ensuring generality and flexibility and allowing a variety of lines of action for improving model components via machine-learning approaches. The model calibration, carried out with reference to flat plate test cases subjected to different pressure gradients and freestream turbulence levels, is discussed in detail. Although the constructed model is calibrated on a group of classic flat plat cases, the validation campaign, mostly carried out on gas turbine cascades, demonstrates its ability to predict transitional flows with engineering accuracy. Finally, while the model is not specifically developed for natural transition predictions, satisfactory predictions are obtained in scenarios with low freestream turbulence for flat plate and airfoil flows.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 1","pages":"81 - 116"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-024-00590-y.pdf","citationCount":"0","resultStr":"{\"title\":\"A Reformulation of the Laminar Kinetic Energy Model to Enable Multi-mode Transition Predictions\",\"authors\":\"Roberto Pacciani, Yuan Fang, Leonardo Metti, Michele Marconcini, Richard Sandberg\",\"doi\":\"10.1007/s10494-024-00590-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper describes the development of a novel transition/turbulence model based on the laminar kinetic energy concept. The model is intended as a base framework for data-driven improvements. Starting from a previously developed framework, mainly aimed at separated-flow transition predictions, suitable terms for model generalization are identified and reformulated for handling different transition modes, namely bypass and separated-flow modes. The ideology for the definition of new terms has its roots in mixing phenomenological and correlation-based arguments, ensuring generality and flexibility and allowing a variety of lines of action for improving model components via machine-learning approaches. The model calibration, carried out with reference to flat plate test cases subjected to different pressure gradients and freestream turbulence levels, is discussed in detail. Although the constructed model is calibrated on a group of classic flat plat cases, the validation campaign, mostly carried out on gas turbine cascades, demonstrates its ability to predict transitional flows with engineering accuracy. Finally, while the model is not specifically developed for natural transition predictions, satisfactory predictions are obtained in scenarios with low freestream turbulence for flat plate and airfoil flows.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"114 1\",\"pages\":\"81 - 116\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-024-00590-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-024-00590-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00590-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
A Reformulation of the Laminar Kinetic Energy Model to Enable Multi-mode Transition Predictions
The paper describes the development of a novel transition/turbulence model based on the laminar kinetic energy concept. The model is intended as a base framework for data-driven improvements. Starting from a previously developed framework, mainly aimed at separated-flow transition predictions, suitable terms for model generalization are identified and reformulated for handling different transition modes, namely bypass and separated-flow modes. The ideology for the definition of new terms has its roots in mixing phenomenological and correlation-based arguments, ensuring generality and flexibility and allowing a variety of lines of action for improving model components via machine-learning approaches. The model calibration, carried out with reference to flat plate test cases subjected to different pressure gradients and freestream turbulence levels, is discussed in detail. Although the constructed model is calibrated on a group of classic flat plat cases, the validation campaign, mostly carried out on gas turbine cascades, demonstrates its ability to predict transitional flows with engineering accuracy. Finally, while the model is not specifically developed for natural transition predictions, satisfactory predictions are obtained in scenarios with low freestream turbulence for flat plate and airfoil flows.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.