{"title":"克雷洛夫基热化","authors":"Mohsen Alishahiha, Mohammad Javad Vasli","doi":"10.1140/epjc/s10052-025-13757-2","DOIUrl":null,"url":null,"abstract":"<div><p>We study thermalization in closed non-integrable quantum systems using the Krylov basis. We demonstrate that for thermalization to occur, the matrix representation of typical local operators in the Krylov basis should exhibit a specific tridiagonal form with all other elements in the matrix being exponentially small, reminiscent of the eigenstate thermalization hypothesis. Within this framework, we propose that the nature of thermalization, whether weak or strong, can be examined by the infinite time average of the Krylov complexity. Moreover, we analyze the variance of Lanczos coefficients as another probe for the nature of thermalization. One observes that although the variance of Lanczos coefficients may capture certain features of thermalization, it is not as effective as the infinite time average of complexity.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13757-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermalization in Krylov basis\",\"authors\":\"Mohsen Alishahiha, Mohammad Javad Vasli\",\"doi\":\"10.1140/epjc/s10052-025-13757-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study thermalization in closed non-integrable quantum systems using the Krylov basis. We demonstrate that for thermalization to occur, the matrix representation of typical local operators in the Krylov basis should exhibit a specific tridiagonal form with all other elements in the matrix being exponentially small, reminiscent of the eigenstate thermalization hypothesis. Within this framework, we propose that the nature of thermalization, whether weak or strong, can be examined by the infinite time average of the Krylov complexity. Moreover, we analyze the variance of Lanczos coefficients as another probe for the nature of thermalization. One observes that although the variance of Lanczos coefficients may capture certain features of thermalization, it is not as effective as the infinite time average of complexity.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13757-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-13757-2\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13757-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
We study thermalization in closed non-integrable quantum systems using the Krylov basis. We demonstrate that for thermalization to occur, the matrix representation of typical local operators in the Krylov basis should exhibit a specific tridiagonal form with all other elements in the matrix being exponentially small, reminiscent of the eigenstate thermalization hypothesis. Within this framework, we propose that the nature of thermalization, whether weak or strong, can be examined by the infinite time average of the Krylov complexity. Moreover, we analyze the variance of Lanczos coefficients as another probe for the nature of thermalization. One observes that although the variance of Lanczos coefficients may capture certain features of thermalization, it is not as effective as the infinite time average of complexity.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.