设计金红石/锐钛矿型TiO2在二维Ti3C2Tx上生长提高光催化反应的光量子效率

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Letters Pub Date : 2025-01-17 DOI:10.1007/s10562-025-04934-9
Wei Gan, Yan Guo, Dan Zhu, Min Ling, Can Jiang, Shengfu Zhang
{"title":"设计金红石/锐钛矿型TiO2在二维Ti3C2Tx上生长提高光催化反应的光量子效率","authors":"Wei Gan,&nbsp;Yan Guo,&nbsp;Dan Zhu,&nbsp;Min Ling,&nbsp;Can Jiang,&nbsp;Shengfu Zhang","doi":"10.1007/s10562-025-04934-9","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing problems caused by water pollution, the use of photocatalytic oxidation to remove pollutants from wastewater is a sustainable strategy. However, it is challenging to develop well-designed photocatalysts with high photo-quantum efficiency and the comprehension of their photocatalytic reaction mechanisms. Herein, a R/A-TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> (R: rutile; A: anatase) photocatalyst with different ratios of rutile and anatase phases was prepared by a facile hydrothermal method. The results showed that the number of rutile and anatase phases could be readily regulated by adjusting the dosage of titanium isopropoxide (TTIP) and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>. The prepared R/A-TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-0.2 contained a mass fraction of 42% rutile phase and 58% anatase phase, with the interface between the two phases exhibited a tightly bonded structure. Meanwhile, the heterojunction between the heterophase TiO<sub>2</sub> and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> interfaces improved the photo-quantum efficiency of R/A-TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, and the degradation efficiency of Rhodamine B (RhB) by R/A-TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-0.2 was 77.82% in 2 h under ultraviolet light illumination. Ultimately, the active species capture experiments verified that the primary active species in the photocatalytic reaction was h<sup>+</sup>, ·OH, and·O<sub>2</sub><sup>−</sup>. This work could shed light on the new approach to the rational design of high-efficiency heterophase TiO<sub>2</sub>-based photocatalysts.</p><h3>Graphical Abstract</h3><p>R/A-TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> photocatalysts with heterojunctions were controllably synthesized by an EDTA-2Na-assisted hydrothermal method.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement the Photo-Quantum Efficiency in Photocatalytic Reactions via Well-Designed Rutile/Anatase TiO2 Growth on 2D Ti3C2Tx\",\"authors\":\"Wei Gan,&nbsp;Yan Guo,&nbsp;Dan Zhu,&nbsp;Min Ling,&nbsp;Can Jiang,&nbsp;Shengfu Zhang\",\"doi\":\"10.1007/s10562-025-04934-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the increasing problems caused by water pollution, the use of photocatalytic oxidation to remove pollutants from wastewater is a sustainable strategy. However, it is challenging to develop well-designed photocatalysts with high photo-quantum efficiency and the comprehension of their photocatalytic reaction mechanisms. Herein, a R/A-TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> (R: rutile; A: anatase) photocatalyst with different ratios of rutile and anatase phases was prepared by a facile hydrothermal method. The results showed that the number of rutile and anatase phases could be readily regulated by adjusting the dosage of titanium isopropoxide (TTIP) and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>. The prepared R/A-TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-0.2 contained a mass fraction of 42% rutile phase and 58% anatase phase, with the interface between the two phases exhibited a tightly bonded structure. Meanwhile, the heterojunction between the heterophase TiO<sub>2</sub> and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> interfaces improved the photo-quantum efficiency of R/A-TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, and the degradation efficiency of Rhodamine B (RhB) by R/A-TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-0.2 was 77.82% in 2 h under ultraviolet light illumination. Ultimately, the active species capture experiments verified that the primary active species in the photocatalytic reaction was h<sup>+</sup>, ·OH, and·O<sub>2</sub><sup>−</sup>. This work could shed light on the new approach to the rational design of high-efficiency heterophase TiO<sub>2</sub>-based photocatalysts.</p><h3>Graphical Abstract</h3><p>R/A-TiO<sub>2</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> photocatalysts with heterojunctions were controllably synthesized by an EDTA-2Na-assisted hydrothermal method.</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":508,\"journal\":{\"name\":\"Catalysis Letters\",\"volume\":\"155 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10562-025-04934-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-04934-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着水污染问题的日益严重,利用光催化氧化技术去除废水中的污染物是一种可持续发展的策略。然而,开发设计良好、光量子效率高的光催化剂及其光催化反应机理是一个挑战。其中,R/ a - tio2 /Ti3C2Tx (R:金红石;采用水热法制备了金红石与锐钛矿不同配比的光催化剂。结果表明,通过调节异丙醇钛(TTIP)和Ti3C2Tx的用量,可以很容易地调节金红石相和锐钛矿相的数量。制备的R/ a - tio2 /Ti3C2Tx-0.2的金红石相质量分数为42%,锐钛矿相质量分数为58%,两相界面呈紧密结合结构。同时,异相TiO2与Ti3C2Tx界面的异质结提高了R/A-TiO2/Ti3C2Tx的光量子效率,在紫外光照射下,R/A-TiO2/Ti3C2Tx-0.2在2 h内对Rhodamine B (RhB)的降解效率为77.82%。最终,活性物质捕获实验验证了光催化反应中的主要活性物质是h+、·OH和·O2−。本研究为合理设计高效异相tio2基光催化剂提供了新思路。采用edta - 2na辅助水热法合成了具有异质结的r /A-TiO2/Ti3C2Tx光催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancement the Photo-Quantum Efficiency in Photocatalytic Reactions via Well-Designed Rutile/Anatase TiO2 Growth on 2D Ti3C2Tx

With the increasing problems caused by water pollution, the use of photocatalytic oxidation to remove pollutants from wastewater is a sustainable strategy. However, it is challenging to develop well-designed photocatalysts with high photo-quantum efficiency and the comprehension of their photocatalytic reaction mechanisms. Herein, a R/A-TiO2/Ti3C2Tx (R: rutile; A: anatase) photocatalyst with different ratios of rutile and anatase phases was prepared by a facile hydrothermal method. The results showed that the number of rutile and anatase phases could be readily regulated by adjusting the dosage of titanium isopropoxide (TTIP) and Ti3C2Tx. The prepared R/A-TiO2/Ti3C2Tx-0.2 contained a mass fraction of 42% rutile phase and 58% anatase phase, with the interface between the two phases exhibited a tightly bonded structure. Meanwhile, the heterojunction between the heterophase TiO2 and Ti3C2Tx interfaces improved the photo-quantum efficiency of R/A-TiO2/Ti3C2Tx, and the degradation efficiency of Rhodamine B (RhB) by R/A-TiO2/Ti3C2Tx-0.2 was 77.82% in 2 h under ultraviolet light illumination. Ultimately, the active species capture experiments verified that the primary active species in the photocatalytic reaction was h+, ·OH, and·O2. This work could shed light on the new approach to the rational design of high-efficiency heterophase TiO2-based photocatalysts.

Graphical Abstract

R/A-TiO2/Ti3C2Tx photocatalysts with heterojunctions were controllably synthesized by an EDTA-2Na-assisted hydrothermal method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
期刊最新文献
Liquid Phase Nitration of Benzene to Nitrobenzene Using a Mesoporous MoO3/Nb2O5 Nanocatalyst Single-Atom Catalysis for CO Combustion in Automotive Exhaust: A DFT Study Enhanced Catalytic Performance of Egyptian Red Clay Modified with Zirconia Nanoparticles for Methanol Dehydration to Dimethyl Ether g-C3N4 Enhanced Fe3+/ Fe2+ Cycling to Activate PMS for Pharmaceuticals Degradation Under Solar Irradiation Ru Distribution and Activity of Ru/C Catalyst for Continuous Hydrogenation of 3,5-dimethylpyridine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1