用PVA/纳米cb浸渍再生粗骨料研制高导电性自敏感水泥混凝土

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Materials and Structures Pub Date : 2025-01-19 DOI:10.1617/s11527-025-02577-1
Jinxia Xu, Manlin Hou, Yiyang Jiang, Zihui Jiang, Da Li, Feiyue Liu, Yuexuan Liu, Wenku Dong
{"title":"用PVA/纳米cb浸渍再生粗骨料研制高导电性自敏感水泥混凝土","authors":"Jinxia Xu,&nbsp;Manlin Hou,&nbsp;Yiyang Jiang,&nbsp;Zihui Jiang,&nbsp;Da Li,&nbsp;Feiyue Liu,&nbsp;Yuexuan Liu,&nbsp;Wenku Dong","doi":"10.1617/s11527-025-02577-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to develop a novel method of preparing self-sensing concrete with recycled coarse aggregate (RCA) impregnated by polyvinyl alcohol (PVA) solution containing nano carbon black (Nano CB). The four-electrode method was adopted to investigate the influence of modified RCA substitution ratio, temperature and water content on the electrical resistivity of as-fabricated modified RCA concrete. In addition, the effects of modified RCA substitution ratio and loading rate on the piezoresistivity were explored. The results indicate that the modification have successfully attached Nano CB to the surface of RCA, and the micro-pores on the RCA surface have been filled with PVA/ Nano CB slurry, meanwhile, the water absorption decreased by 28.8%, and the crushing value decreased by 42.3%. The workability and compressive strength of concrete are improved by the modification of RCA as well. As the RCA substitution ratio increases, the resistivity of concrete first decreases slowly, then sharply and finally stabilizes. The percolation threshold of modified RCA concrete is approximately 60% substitution ratio of modified RCA (1.76 wt.% Nano CB by weight of cement). Moreover, the conductivity of modified RCA concrete possesses positive temperature sensitivity and humidity adaptability. Under cyclic loading of stress, the order of the maximum FCR value and the stress sensitivity of modified RCA concrete is: percolation zone &gt; conductive zone &gt; insulation zone. The specimens with modified RCA substitution ratio of 60% (in percolation zone) exhibit the best piezoresistive response compared to specimens with substitution ratios of 40% (in insulation zone) and 80% (in conductive zone). In addition, regardless of the modified RCA substitution ratio, the stress sensitivity of specimens decreases with the increase of loading rate.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of highly conductive and self-sensing cement concrete using PVA/nano CB-impregnated recycled coarse aggregate\",\"authors\":\"Jinxia Xu,&nbsp;Manlin Hou,&nbsp;Yiyang Jiang,&nbsp;Zihui Jiang,&nbsp;Da Li,&nbsp;Feiyue Liu,&nbsp;Yuexuan Liu,&nbsp;Wenku Dong\",\"doi\":\"10.1617/s11527-025-02577-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper aims to develop a novel method of preparing self-sensing concrete with recycled coarse aggregate (RCA) impregnated by polyvinyl alcohol (PVA) solution containing nano carbon black (Nano CB). The four-electrode method was adopted to investigate the influence of modified RCA substitution ratio, temperature and water content on the electrical resistivity of as-fabricated modified RCA concrete. In addition, the effects of modified RCA substitution ratio and loading rate on the piezoresistivity were explored. The results indicate that the modification have successfully attached Nano CB to the surface of RCA, and the micro-pores on the RCA surface have been filled with PVA/ Nano CB slurry, meanwhile, the water absorption decreased by 28.8%, and the crushing value decreased by 42.3%. The workability and compressive strength of concrete are improved by the modification of RCA as well. As the RCA substitution ratio increases, the resistivity of concrete first decreases slowly, then sharply and finally stabilizes. The percolation threshold of modified RCA concrete is approximately 60% substitution ratio of modified RCA (1.76 wt.% Nano CB by weight of cement). Moreover, the conductivity of modified RCA concrete possesses positive temperature sensitivity and humidity adaptability. Under cyclic loading of stress, the order of the maximum FCR value and the stress sensitivity of modified RCA concrete is: percolation zone &gt; conductive zone &gt; insulation zone. The specimens with modified RCA substitution ratio of 60% (in percolation zone) exhibit the best piezoresistive response compared to specimens with substitution ratios of 40% (in insulation zone) and 80% (in conductive zone). In addition, regardless of the modified RCA substitution ratio, the stress sensitivity of specimens decreases with the increase of loading rate.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-025-02577-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02577-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了用含纳米炭黑(nano CB)的聚乙烯醇(PVA)溶液浸渍再生粗骨料(RCA)制备自感混凝土的新方法。采用四电极法研究了改性RCA取代比、温度和含水量对制备的改性RCA混凝土电阻率的影响。此外,还探讨了改性RCA取代率和加载率对压电阻率的影响。结果表明,改性后纳米CB成功附着在RCA表面,PVA/纳米CB浆体填充了RCA表面的微孔,吸水率降低了28.8%,破碎值降低了42.3%。改性后的RCA还能提高混凝土的和易性和抗压强度。随着RCA取代比的增大,混凝土电阻率先缓慢下降后急剧下降,最后趋于稳定。改性RCA混凝土的渗透阈值约为改性RCA替代率的60%(水泥重量比纳米CB为1.76 wt.%)。改性RCA混凝土的导电性具有良好的温度敏感性和湿度适应性。在应力循环荷载作用下,改性RCA混凝土的最大FCR值和应力敏感性大小顺序为:渗滤区>;导电区>;保温区。与替代率分别为40%(绝缘区)和80%(导电区)的试样相比,改良RCA替代率为60%(渗流区)的试样表现出最佳的压阻响应。此外,无论修改后的RCA替代比如何,试件的应力敏感性随加载速率的增加而降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of highly conductive and self-sensing cement concrete using PVA/nano CB-impregnated recycled coarse aggregate

This paper aims to develop a novel method of preparing self-sensing concrete with recycled coarse aggregate (RCA) impregnated by polyvinyl alcohol (PVA) solution containing nano carbon black (Nano CB). The four-electrode method was adopted to investigate the influence of modified RCA substitution ratio, temperature and water content on the electrical resistivity of as-fabricated modified RCA concrete. In addition, the effects of modified RCA substitution ratio and loading rate on the piezoresistivity were explored. The results indicate that the modification have successfully attached Nano CB to the surface of RCA, and the micro-pores on the RCA surface have been filled with PVA/ Nano CB slurry, meanwhile, the water absorption decreased by 28.8%, and the crushing value decreased by 42.3%. The workability and compressive strength of concrete are improved by the modification of RCA as well. As the RCA substitution ratio increases, the resistivity of concrete first decreases slowly, then sharply and finally stabilizes. The percolation threshold of modified RCA concrete is approximately 60% substitution ratio of modified RCA (1.76 wt.% Nano CB by weight of cement). Moreover, the conductivity of modified RCA concrete possesses positive temperature sensitivity and humidity adaptability. Under cyclic loading of stress, the order of the maximum FCR value and the stress sensitivity of modified RCA concrete is: percolation zone > conductive zone > insulation zone. The specimens with modified RCA substitution ratio of 60% (in percolation zone) exhibit the best piezoresistive response compared to specimens with substitution ratios of 40% (in insulation zone) and 80% (in conductive zone). In addition, regardless of the modified RCA substitution ratio, the stress sensitivity of specimens decreases with the increase of loading rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
期刊最新文献
3D Printable Ca(OH)2-based geopolymer concrete with steel fiber reinforcement Mechanical properties of sustainable freshwater marine sand mortar Classification and quantification of minor iron-sulfide concentrations in concrete aggregate using automated mineralogy Recommendation of RILEM TC 269-IAM: damage assessment in consideration of repair/retrofit-recovery in concrete and masonry structures by means of innovative NDT Report of RILEM TC 281-CCC: phase assemblage alterations and carbonation potential of mortar with blended cements induced by long duration carbonation exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1