极端地磁AE和Apo指数对南北极光区电离层变化的不对称性

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Geomagnetism and Aeronomy Pub Date : 2025-01-16 DOI:10.1134/S0016793224700130
T. L. Gulyaeva
{"title":"极端地磁AE和Apo指数对南北极光区电离层变化的不对称性","authors":"T. L. Gulyaeva","doi":"10.1134/S0016793224700130","DOIUrl":null,"url":null,"abstract":"<p>Differences in geomagnetic and ionospheric activity are investigated for the maximum monthly–hourly values of the auroral electrojet <i>AE</i> index, measured on a network of magnetometers above 60° in the Northern hemisphere from 1995 to 2019. The selected extreme <i>AE</i> indices were compared with the time–matched 1-h <i>Apo</i> indices observed in the sub-auroral zone from 1995 to the present. A high correlation of 300 selected values of <i>AE</i> and <i>Apo</i> indices (cc = 0.69) was obtained for the period of their synchronous observations in 1995–2019. For a comparison, variations of the ionospheric zonal dispersion (Net Volume, <i>NT</i>) are considered designating the difference between the positive and negative deviations of <i>TEC</i> from the quiet state in the selected zone. The <i>NT</i> is produced from <i>TEC</i>-based <i>W</i>-index values at the grid in the auroral zones of the Northern and Southern hemispheres for the geomagnetic latitudes exceeding ±60°. The <i>NT</i> values were estimated from JPL maps of the total electron content, GIM–TEC, and the corresponding <i>W</i>-index maps converted from geographic to geomagnetic coordinates. We observed an asymmetry of the ionospheric variability in the Northern and Southern auroral zones with the dominance of the positive (negative) <i>NT</i> values in the local winter (summer). At the same time, the seasonal variation of the geomagnetic <i>AE</i> and <i>Apo</i> indices recorded mainly in the Northern Hemisphere shows changes similar to the ionospheric variations of <i>NT</i> in the Southern Hemisphere with a decrease in the amplitude by the winter solstice. The analytical dependences of <i>NT</i> indices on the day of year in the North and South auroral zones were derived suitable for estimating the ionospheric variability in the operational forecasting models of the ionosphere.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 7","pages":"1080 - 1088"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetry of the Ionosphere Variability in the North and South Auroral Zones at the Extreme Geomagnetic AE and Apo Indices\",\"authors\":\"T. L. Gulyaeva\",\"doi\":\"10.1134/S0016793224700130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Differences in geomagnetic and ionospheric activity are investigated for the maximum monthly–hourly values of the auroral electrojet <i>AE</i> index, measured on a network of magnetometers above 60° in the Northern hemisphere from 1995 to 2019. The selected extreme <i>AE</i> indices were compared with the time–matched 1-h <i>Apo</i> indices observed in the sub-auroral zone from 1995 to the present. A high correlation of 300 selected values of <i>AE</i> and <i>Apo</i> indices (cc = 0.69) was obtained for the period of their synchronous observations in 1995–2019. For a comparison, variations of the ionospheric zonal dispersion (Net Volume, <i>NT</i>) are considered designating the difference between the positive and negative deviations of <i>TEC</i> from the quiet state in the selected zone. The <i>NT</i> is produced from <i>TEC</i>-based <i>W</i>-index values at the grid in the auroral zones of the Northern and Southern hemispheres for the geomagnetic latitudes exceeding ±60°. The <i>NT</i> values were estimated from JPL maps of the total electron content, GIM–TEC, and the corresponding <i>W</i>-index maps converted from geographic to geomagnetic coordinates. We observed an asymmetry of the ionospheric variability in the Northern and Southern auroral zones with the dominance of the positive (negative) <i>NT</i> values in the local winter (summer). At the same time, the seasonal variation of the geomagnetic <i>AE</i> and <i>Apo</i> indices recorded mainly in the Northern Hemisphere shows changes similar to the ionospheric variations of <i>NT</i> in the Southern Hemisphere with a decrease in the amplitude by the winter solstice. The analytical dependences of <i>NT</i> indices on the day of year in the North and South auroral zones were derived suitable for estimating the ionospheric variability in the operational forecasting models of the ionosphere.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":\"64 7\",\"pages\":\"1080 - 1088\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793224700130\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224700130","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了1995年至2019年在北半球60°以上的磁力计网络上测量的极光电喷声发射指数的最大月小时值,研究了地磁和电离层活动的差异。将选取的极端声发射指数与1995年至今在亚极光带观测到的时间匹配的1 h载脂蛋白指数进行比较。在1995-2019年的同步观测期间,300个AE值与载脂蛋白指数呈高度相关(cc = 0.69)。为了进行比较,考虑电离层纬向色散(净体积,NT)的变化,表示所选区域TEC与安静状态的正负偏差之间的差异。NT是根据地磁纬度超过±60°的南北半球极光区网格上基于tec的w指数值产生的。NT值由JPL总电子含量图、jim - tec图和相应的由地理坐标转换成地磁坐标的w指数图估算。我们观察到南北极光区电离层变异性的不对称性,在当地冬(夏)季以正(负)NT值为主。同时,主要在北半球记录的地磁AE和Apo指数的季节变化与南半球NT的电离层变化相似,但在冬至前振幅减小。在电离层业务预报模式中,推导出了北半球和南半球极光区年数与NT指数的分析相关性,适用于电离层变率的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymmetry of the Ionosphere Variability in the North and South Auroral Zones at the Extreme Geomagnetic AE and Apo Indices

Differences in geomagnetic and ionospheric activity are investigated for the maximum monthly–hourly values of the auroral electrojet AE index, measured on a network of magnetometers above 60° in the Northern hemisphere from 1995 to 2019. The selected extreme AE indices were compared with the time–matched 1-h Apo indices observed in the sub-auroral zone from 1995 to the present. A high correlation of 300 selected values of AE and Apo indices (cc = 0.69) was obtained for the period of their synchronous observations in 1995–2019. For a comparison, variations of the ionospheric zonal dispersion (Net Volume, NT) are considered designating the difference between the positive and negative deviations of TEC from the quiet state in the selected zone. The NT is produced from TEC-based W-index values at the grid in the auroral zones of the Northern and Southern hemispheres for the geomagnetic latitudes exceeding ±60°. The NT values were estimated from JPL maps of the total electron content, GIM–TEC, and the corresponding W-index maps converted from geographic to geomagnetic coordinates. We observed an asymmetry of the ionospheric variability in the Northern and Southern auroral zones with the dominance of the positive (negative) NT values in the local winter (summer). At the same time, the seasonal variation of the geomagnetic AE and Apo indices recorded mainly in the Northern Hemisphere shows changes similar to the ionospheric variations of NT in the Southern Hemisphere with a decrease in the amplitude by the winter solstice. The analytical dependences of NT indices on the day of year in the North and South auroral zones were derived suitable for estimating the ionospheric variability in the operational forecasting models of the ionosphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
期刊最新文献
Heliogeophysical Features and Viral Epidemics of the 21st Century Trigger Effects of Space Weather Impact on Earth Tectonics and Their Impact on Climate Climate Variations and Solar Activity in the Holocene The Influence of Explosive Processes in Active Regions on the Characteristics of the Magnetic Field in the Umbra of Sunspots Depending on Their Size and Position The Efficiency of Acceleration of Nonthermal Electrons with Whistler Turbulence in a Flare Loop Depending on Its Frequency Spectrum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1