Touayba Ahl El Haj, Khadija Sadraoui, Khalid El Mejdoubi, Ahmed El Yacoubi, Brahim Chafik El Idrissi, Brahim Sallek
{"title":"利用氮化石墨碳作为可回收的无金属光催化剂,在可见光诱导下合成苯并噻唑衍生物","authors":"Touayba Ahl El Haj, Khadija Sadraoui, Khalid El Mejdoubi, Ahmed El Yacoubi, Brahim Chafik El Idrissi, Brahim Sallek","doi":"10.1007/s11164-024-05443-x","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of visible light irradiation in organic synthesis has garnered significant attention due to its environmentally friendly nature and efficiency. In this study, we explore the application of graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) as a photocatalyst for the synthesis of 2-Arylbenzothiazole under visible light irradiation. The reaction conditions were optimized to achieve high yields (89–97%) and selectivity of products. Characterization techniques such as FTIR spectroscopy, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and UV–Vis Diffuse Reflectance Spectra (DRS) were employed to analyze the catalyst structure. The results demonstrated that g-C<sub>3</sub>N<sub>4</sub> acted as an effective photocatalyst, facilitating the synthesis of benzothiazole with excellent yields (89–97%). This approach marks a notable improvement over prior methodologies, leading to significantly faster reaction times and improved yields. Additionally, the exceptional recyclability of g-C<sub>3</sub>N<sub>4</sub> allows it to be reused in multiple reaction cycles without significant loss of activity, which is a crucial factor in reducing waste and resource consumption, facilitating a greener process. Consequently, it highlights g-C<sub>3</sub>N<sub>4</sub>’s potential for sustainable and eco-friendly synthesis of 2-Arylbenzothiazole and other valuable organic compounds.</p><h3>Graphical abstract</h3><ul>\n <li>\n <p>The g-C<sub>3</sub>N<sub>4</sub> was synthesized by thermal polymerization of urea, and was characterized through several technique such as XRD, FTIR, SEM, and DRS.</p>\n </li>\n <li>\n <p>g-C<sub>3</sub>N<sub>4</sub> was used as highly efficient photocatalyst of 2-arylbenzothiazole under visible light irradiation.</p>\n </li>\n <li>\n <p>Benzothiazoles were successfully prepared, yielding 89–97% in a brief stirring time of 5–15 min.</p>\n </li>\n <li>\n <p>g-C<sub>3</sub>N<sub>4</sub> continued to exhibit high catalytic activity after being recycled multiple times, without any significant degradation.</p>\n </li>\n </ul><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"51 1","pages":"43 - 57"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visible light-induced synthesis of benzothiazole derivatives using graphitic carbon nitride as a recyclable metal-free photocatalyst\",\"authors\":\"Touayba Ahl El Haj, Khadija Sadraoui, Khalid El Mejdoubi, Ahmed El Yacoubi, Brahim Chafik El Idrissi, Brahim Sallek\",\"doi\":\"10.1007/s11164-024-05443-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The utilization of visible light irradiation in organic synthesis has garnered significant attention due to its environmentally friendly nature and efficiency. In this study, we explore the application of graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) as a photocatalyst for the synthesis of 2-Arylbenzothiazole under visible light irradiation. The reaction conditions were optimized to achieve high yields (89–97%) and selectivity of products. Characterization techniques such as FTIR spectroscopy, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and UV–Vis Diffuse Reflectance Spectra (DRS) were employed to analyze the catalyst structure. The results demonstrated that g-C<sub>3</sub>N<sub>4</sub> acted as an effective photocatalyst, facilitating the synthesis of benzothiazole with excellent yields (89–97%). This approach marks a notable improvement over prior methodologies, leading to significantly faster reaction times and improved yields. Additionally, the exceptional recyclability of g-C<sub>3</sub>N<sub>4</sub> allows it to be reused in multiple reaction cycles without significant loss of activity, which is a crucial factor in reducing waste and resource consumption, facilitating a greener process. Consequently, it highlights g-C<sub>3</sub>N<sub>4</sub>’s potential for sustainable and eco-friendly synthesis of 2-Arylbenzothiazole and other valuable organic compounds.</p><h3>Graphical abstract</h3><ul>\\n <li>\\n <p>The g-C<sub>3</sub>N<sub>4</sub> was synthesized by thermal polymerization of urea, and was characterized through several technique such as XRD, FTIR, SEM, and DRS.</p>\\n </li>\\n <li>\\n <p>g-C<sub>3</sub>N<sub>4</sub> was used as highly efficient photocatalyst of 2-arylbenzothiazole under visible light irradiation.</p>\\n </li>\\n <li>\\n <p>Benzothiazoles were successfully prepared, yielding 89–97% in a brief stirring time of 5–15 min.</p>\\n </li>\\n <li>\\n <p>g-C<sub>3</sub>N<sub>4</sub> continued to exhibit high catalytic activity after being recycled multiple times, without any significant degradation.</p>\\n </li>\\n </ul><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":753,\"journal\":{\"name\":\"Research on Chemical Intermediates\",\"volume\":\"51 1\",\"pages\":\"43 - 57\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research on Chemical Intermediates\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11164-024-05443-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-024-05443-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Visible light-induced synthesis of benzothiazole derivatives using graphitic carbon nitride as a recyclable metal-free photocatalyst
The utilization of visible light irradiation in organic synthesis has garnered significant attention due to its environmentally friendly nature and efficiency. In this study, we explore the application of graphitic carbon nitride (g-C3N4) as a photocatalyst for the synthesis of 2-Arylbenzothiazole under visible light irradiation. The reaction conditions were optimized to achieve high yields (89–97%) and selectivity of products. Characterization techniques such as FTIR spectroscopy, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and UV–Vis Diffuse Reflectance Spectra (DRS) were employed to analyze the catalyst structure. The results demonstrated that g-C3N4 acted as an effective photocatalyst, facilitating the synthesis of benzothiazole with excellent yields (89–97%). This approach marks a notable improvement over prior methodologies, leading to significantly faster reaction times and improved yields. Additionally, the exceptional recyclability of g-C3N4 allows it to be reused in multiple reaction cycles without significant loss of activity, which is a crucial factor in reducing waste and resource consumption, facilitating a greener process. Consequently, it highlights g-C3N4’s potential for sustainable and eco-friendly synthesis of 2-Arylbenzothiazole and other valuable organic compounds.
Graphical abstract
The g-C3N4 was synthesized by thermal polymerization of urea, and was characterized through several technique such as XRD, FTIR, SEM, and DRS.
g-C3N4 was used as highly efficient photocatalyst of 2-arylbenzothiazole under visible light irradiation.
Benzothiazoles were successfully prepared, yielding 89–97% in a brief stirring time of 5–15 min.
g-C3N4 continued to exhibit high catalytic activity after being recycled multiple times, without any significant degradation.
期刊介绍:
Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry.
The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.