rna结合蛋白Sam68对聚(adp -核糖)聚合酶1活性的影响

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry (Moscow) Pub Date : 2025-01-17 DOI:10.1134/S0006297924120046
Konstantin N. Naumenko, Egor A. Berezhnev, Tatyana A. Kurgina, Maria V. Sukhanova, Olga I. Lavrik
{"title":"rna结合蛋白Sam68对聚(adp -核糖)聚合酶1活性的影响","authors":"Konstantin N. Naumenko,&nbsp;Egor A. Berezhnev,&nbsp;Tatyana A. Kurgina,&nbsp;Maria V. Sukhanova,&nbsp;Olga I. Lavrik","doi":"10.1134/S0006297924120046","DOIUrl":null,"url":null,"abstract":"<p>Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in <i>Escherichia coli</i> cells were optimized and procedure for protein purification was developed. It was found that Sam68 is able to regulate catalytic activity of PARP1, stimulating auto-poly(ADP-ribosyl)ation of PARP1, interacting with the damaged DNA and purified poly(ADP-ribose) (PAR). Based on the experimental data, a hypothesis on the mechanism of PARP1 activity stimulation by the Sam68 protein was proposed, which involves formation of a complex of Sam68 with poly(ADP-ribosyl)ated PARP1. Sam68 interacts with PAR, shielding its negative charge, which increases the time of PARP1 in the complex with damaged DNA and the overall yield of PAR synthesized by this enzyme.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 12-13","pages":"2143 - 2154"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of the RNA-Binding Protein Sam68 on Poly(ADP-Ribose)polymerase 1 Activity\",\"authors\":\"Konstantin N. Naumenko,&nbsp;Egor A. Berezhnev,&nbsp;Tatyana A. Kurgina,&nbsp;Maria V. Sukhanova,&nbsp;Olga I. Lavrik\",\"doi\":\"10.1134/S0006297924120046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in <i>Escherichia coli</i> cells were optimized and procedure for protein purification was developed. It was found that Sam68 is able to regulate catalytic activity of PARP1, stimulating auto-poly(ADP-ribosyl)ation of PARP1, interacting with the damaged DNA and purified poly(ADP-ribose) (PAR). Based on the experimental data, a hypothesis on the mechanism of PARP1 activity stimulation by the Sam68 protein was proposed, which involves formation of a complex of Sam68 with poly(ADP-ribosyl)ated PARP1. Sam68 interacts with PAR, shielding its negative charge, which increases the time of PARP1 in the complex with damaged DNA and the overall yield of PAR synthesized by this enzyme.</p>\",\"PeriodicalId\":483,\"journal\":{\"name\":\"Biochemistry (Moscow)\",\"volume\":\"89 12-13\",\"pages\":\"2143 - 2154\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry (Moscow)\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0006297924120046\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow)","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0006297924120046","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

考虑到rna结合蛋白参与调控DNA修复的关键因子聚(adp -核糖)聚合酶1 (PARP1)的活性,我们研究了内在无序蛋白Sam68 (68 kDa有丝分裂期间src相关底物)对该酶催化活性的影响。获得了含有Sam68蛋白编码序列的质粒。利用获得的构建体,优化了Sam68在大肠杆菌细胞中的表达条件,并建立了蛋白纯化工艺。发现Sam68能够调节PARP1的催化活性,刺激PARP1的自聚(adp -核糖)化,与受损的DNA和纯化的聚(adp -核糖)(PAR)相互作用。基于实验数据,提出Sam68蛋白刺激PARP1活性的机制假说,认为Sam68与poly(ADP-ribosyl)修饰的PARP1形成复合物。Sam68与PAR相互作用,屏蔽其负电荷,这增加了PARP1在受损DNA复合物中的时间和该酶合成PAR的总产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of the RNA-Binding Protein Sam68 on Poly(ADP-Ribose)polymerase 1 Activity

Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in Escherichia coli cells were optimized and procedure for protein purification was developed. It was found that Sam68 is able to regulate catalytic activity of PARP1, stimulating auto-poly(ADP-ribosyl)ation of PARP1, interacting with the damaged DNA and purified poly(ADP-ribose) (PAR). Based on the experimental data, a hypothesis on the mechanism of PARP1 activity stimulation by the Sam68 protein was proposed, which involves formation of a complex of Sam68 with poly(ADP-ribosyl)ated PARP1. Sam68 interacts with PAR, shielding its negative charge, which increases the time of PARP1 in the complex with damaged DNA and the overall yield of PAR synthesized by this enzyme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry (Moscow)
Biochemistry (Moscow) 生物-生化与分子生物学
CiteScore
4.70
自引率
3.60%
发文量
139
审稿时长
2 months
期刊介绍: Biochemistry (Moscow) is the journal that includes research papers in all fields of biochemistry as well as biochemical aspects of molecular biology, bioorganic chemistry, microbiology, immunology, physiology, and biomedical sciences. Coverage also extends to new experimental methods in biochemistry, theoretical contributions of biochemical importance, reviews of contemporary biochemical topics, and mini-reviews (News in Biochemistry).
期刊最新文献
Auxin Triggers AHR Pathway Activation in the Auxin-Inducible Degron System in Mammalian Cells Pathogenesis-Associated Bacterial Amyloids: The Network of Interactions Troponins and Skeletal Muscle Pathologies The First Multiomics Association Study of Trace Element and Mineral Concentration and RNA Sequencing Profiles in Human Cancers Effect of 8-Oxo-1,N6-Ethenoadenine Derivatives on the Activity of RNA Polymerases from SARS-CoV-2 and Escherichia coli
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1