使用抗氧化添加剂提高沥青路面的抗疲劳性能和低温性能

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Materials and Structures Pub Date : 2025-01-21 DOI:10.1617/s11527-025-02574-4
Yongping Hu, Xu Cheng, Anand Sreeram, Wei Si, Bo Li, Georgios Pipintakos, Gordon D. Airey
{"title":"使用抗氧化添加剂提高沥青路面的抗疲劳性能和低温性能","authors":"Yongping Hu,&nbsp;Xu Cheng,&nbsp;Anand Sreeram,&nbsp;Wei Si,&nbsp;Bo Li,&nbsp;Georgios Pipintakos,&nbsp;Gordon D. Airey","doi":"10.1617/s11527-025-02574-4","DOIUrl":null,"url":null,"abstract":"<div><p>Ageing results in significant performance deterioration of asphalt, especially in relation to its fatigue and low-temperature performance. This performance deterioration can theoretically be lowered by incorporating antioxidants in asphalt mixtures. Although there are several promising studies that have shown the potential efficacy of antioxidants such as zinc diethyldithiocarbamate (ZDC), no work has comprehensively evaluated its performance. In this regard, ZDC was employed to evaluate its effect as an antioxidant to slow down the ageing related performance deterioration of bitumen and asphalt mixtures. Both ZDC-modified (3% and 5%) and unmodified bitumen and asphalt mixtures were subjected to short-term and long-term ageing. Afterwards, linear amplitude sweep (LAS) tests and low-temperature frequency sweep tests were carried out on the bitumen samples using a dynamic shear rheometer (DSR). Four-point bending (4PB) fatigue tests were carried out at 25 °C, and indirect tensile asphalt cracking tests (IDEAL-CT) were carried out at 25 °C and −10 °C on the various asphalt mixtures. It was seen that properties of long-term aged bitumen and asphalt mixtures measured at low temperature and intermediate temperature could be improved by 13–69% for mixtures and 1–44% for bitumen with the addition of ZDC, compared to the unmodified samples. The ageing-mitigation efficiency of ZDC was more pronounced for the low-temperature performance-based metrics since its performance deterioration rate was significantly reduced. Overall, a comprehensive performance evaluation of the effectiveness of antioxidants at different scales provided robust evidence for the potential extension of this technology to field trials and application.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02574-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing fatigue resistance and low-temperature performance of asphalt pavements using antioxidant additives\",\"authors\":\"Yongping Hu,&nbsp;Xu Cheng,&nbsp;Anand Sreeram,&nbsp;Wei Si,&nbsp;Bo Li,&nbsp;Georgios Pipintakos,&nbsp;Gordon D. Airey\",\"doi\":\"10.1617/s11527-025-02574-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ageing results in significant performance deterioration of asphalt, especially in relation to its fatigue and low-temperature performance. This performance deterioration can theoretically be lowered by incorporating antioxidants in asphalt mixtures. Although there are several promising studies that have shown the potential efficacy of antioxidants such as zinc diethyldithiocarbamate (ZDC), no work has comprehensively evaluated its performance. In this regard, ZDC was employed to evaluate its effect as an antioxidant to slow down the ageing related performance deterioration of bitumen and asphalt mixtures. Both ZDC-modified (3% and 5%) and unmodified bitumen and asphalt mixtures were subjected to short-term and long-term ageing. Afterwards, linear amplitude sweep (LAS) tests and low-temperature frequency sweep tests were carried out on the bitumen samples using a dynamic shear rheometer (DSR). Four-point bending (4PB) fatigue tests were carried out at 25 °C, and indirect tensile asphalt cracking tests (IDEAL-CT) were carried out at 25 °C and −10 °C on the various asphalt mixtures. It was seen that properties of long-term aged bitumen and asphalt mixtures measured at low temperature and intermediate temperature could be improved by 13–69% for mixtures and 1–44% for bitumen with the addition of ZDC, compared to the unmodified samples. The ageing-mitigation efficiency of ZDC was more pronounced for the low-temperature performance-based metrics since its performance deterioration rate was significantly reduced. Overall, a comprehensive performance evaluation of the effectiveness of antioxidants at different scales provided robust evidence for the potential extension of this technology to field trials and application.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1617/s11527-025-02574-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-025-02574-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02574-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

老化导致沥青的性能显著下降,特别是在其疲劳和低温性能方面。理论上,在沥青混合料中加入抗氧化剂可以降低这种性能恶化。虽然有一些很有前景的研究显示了抗氧化剂的潜在功效,如二乙基二硫代氨基甲酸锌(ZDC),但还没有研究对其性能进行全面评估。在这方面,ZDC被用来评估其作为抗氧化剂的效果,以减缓与老化有关的沥青和沥青混合料的性能下降。zdc改性(3%和5%)和未改性的沥青和沥青混合料都经历了短期和长期的老化。随后,利用动态剪切流变仪(DSR)对沥青试样进行了线性振幅扫描(LAS)试验和低温频率扫描试验。在25℃条件下进行了四点弯曲(4PB)疲劳试验,在25℃和- 10℃条件下对各种沥青混合料进行了间接拉伸沥青开裂试验(IDEAL-CT)。结果表明,在低温和中温条件下,掺加ZDC的长期老化沥青和沥青混合料的性能比未掺加ZDC的沥青和混合料的性能分别提高了13-69%和1-44%。在低温性能指标下,ZDC的老化减缓效率更为显著,其性能劣化率显著降低。总体而言,对不同规模抗氧化剂有效性的综合性能评估为该技术在田间试验和应用中的潜在推广提供了有力的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing fatigue resistance and low-temperature performance of asphalt pavements using antioxidant additives

Ageing results in significant performance deterioration of asphalt, especially in relation to its fatigue and low-temperature performance. This performance deterioration can theoretically be lowered by incorporating antioxidants in asphalt mixtures. Although there are several promising studies that have shown the potential efficacy of antioxidants such as zinc diethyldithiocarbamate (ZDC), no work has comprehensively evaluated its performance. In this regard, ZDC was employed to evaluate its effect as an antioxidant to slow down the ageing related performance deterioration of bitumen and asphalt mixtures. Both ZDC-modified (3% and 5%) and unmodified bitumen and asphalt mixtures were subjected to short-term and long-term ageing. Afterwards, linear amplitude sweep (LAS) tests and low-temperature frequency sweep tests were carried out on the bitumen samples using a dynamic shear rheometer (DSR). Four-point bending (4PB) fatigue tests were carried out at 25 °C, and indirect tensile asphalt cracking tests (IDEAL-CT) were carried out at 25 °C and −10 °C on the various asphalt mixtures. It was seen that properties of long-term aged bitumen and asphalt mixtures measured at low temperature and intermediate temperature could be improved by 13–69% for mixtures and 1–44% for bitumen with the addition of ZDC, compared to the unmodified samples. The ageing-mitigation efficiency of ZDC was more pronounced for the low-temperature performance-based metrics since its performance deterioration rate was significantly reduced. Overall, a comprehensive performance evaluation of the effectiveness of antioxidants at different scales provided robust evidence for the potential extension of this technology to field trials and application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
期刊最新文献
3D Printable Ca(OH)2-based geopolymer concrete with steel fiber reinforcement Mechanical properties of sustainable freshwater marine sand mortar Classification and quantification of minor iron-sulfide concentrations in concrete aggregate using automated mineralogy Recommendation of RILEM TC 269-IAM: damage assessment in consideration of repair/retrofit-recovery in concrete and masonry structures by means of innovative NDT Report of RILEM TC 281-CCC: phase assemblage alterations and carbonation potential of mortar with blended cements induced by long duration carbonation exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1