B32C36壳层与C60同价的内源性硼富勒烯X@B32C36 (X = CH4, BH4−,H2O和NH3)的预测

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Modeling Pub Date : 2025-01-21 DOI:10.1007/s00894-024-06276-6
Ting Zhang, Cai-Yue Gao, Xiao-Ni Zhao, Gao-Yi Han, Si-Dian Li
{"title":"B32C36壳层与C60同价的内源性硼富勒烯X@B32C36 (X = CH4, BH4−,H2O和NH3)的预测","authors":"Ting Zhang,&nbsp;Cai-Yue Gao,&nbsp;Xiao-Ni Zhao,&nbsp;Gao-Yi Han,&nbsp;Si-Dian Li","doi":"10.1007/s00894-024-06276-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Inspired by the newly synthesized endohedral fullerene<i> T</i> CH<sub>4</sub>@C<sub>60</sub> (<b>1</b>) and based on extensive density functional theory calculations, we predict herein a series of endohedral borafullerenes <i>C</i><sub>3</sub> CH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub> (<b>4</b>), <i>T</i> BH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub><sup>–</sup> (<b>5</b>), <i>C</i><sub>1</sub> H<sub>2</sub>O@B<sub>32</sub>C<sub>36</sub> (<b>6</b>), <i>C</i><sub>3</sub> NH<sub>3</sub>@B<sub>32</sub>C<sub>36</sub> (<b>7</b>), and <i>T</i> C<sub>8</sub>@B<sub>32</sub>C<sub>36</sub><sup>2–</sup> (<b>8</b>) which possess a B<sub>32</sub>C<sub>36</sub> (<b>3</b>) shell isovalent with C<sub>60</sub>, with the neutral <i>D</i><sub><i>2</i></sub> C<sub>8</sub>@B<sub>24</sub>C<sub>44</sub> (<b>9</b>) obtained from C<sub>8</sub>@B<sub>32</sub>C<sub>36</sub><sup>2–</sup> (<b>8</b>) by symmetric C─B substitutions. Detailed adaptive natural density partitioning (AdNDP) bonding analyses and iso-chemical shielding surfaces (ICSSs) calculations indicate that these core–shell species are spherically aromatic in nature, rendering high stability to the systems. More interestingly, based on the calculated effective donor–acceptor interaction between LP(O) → LV(B@B<sub>3</sub>C<sub>3</sub>) in H<sub>2</sub>O@B<sub>32</sub>C<sub>36</sub> (<b>6</b>), we propose the concept of boron bond (BB) in chemistry which is defined as the in-phase orbital overlap between an electronegative atom A as lone-pair (LP) donor and an electron-deficient boron atom with a lone vacant (LV) orbital as LP acceptor. A boron bond appears to possess about 20 ~ 30% of the bond dissociation energy of a typical A-B covalent bond.</p><h3>Methods</h3><p>Extensive density functional theory investigations at the hybrid M06-2X-D3 and PBE0-D3 levels with the basis set 6-311 + G(d) were employed to fully optimize the structures of endohedral <i>C</i><sub>3</sub> CH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub> (<b>4</b>), <i>T</i> BH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub><sup>–</sup> (<b>5</b>), <i>C</i><sub>1</sub> H<sub>2</sub>O@B<sub>32</sub>C<sub>36</sub> (<b>6</b>), <i>C</i><sub>3</sub> NH<sub>3</sub>@B<sub>32</sub>C<sub>36</sub> (<b>7</b>), <i>T</i> C<sub>8</sub>@B<sub>32</sub>C<sub>36</sub><sup>2–</sup> (<b>8</b>), and <i>D</i><sub><i>2</i></sub> C<sub>8</sub>@B<sub>24</sub>C<sub>44</sub> (<b>9</b>), with natural bonding orbital (NBO) and adaptive natural density partitioning (AdNDP) analyses performed to analyze the bonding patterns of the concerned species and the non-covalent interactions reduced density gradient (NCI-RDG) approach utilized to identify the types of the intramolecular non-covalent bonding interactions.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of endohedral borafullerenes X@B32C36 (X = CH4, BH4−, H2O, and NH3) with a B32C36 shell isovalent with C60\",\"authors\":\"Ting Zhang,&nbsp;Cai-Yue Gao,&nbsp;Xiao-Ni Zhao,&nbsp;Gao-Yi Han,&nbsp;Si-Dian Li\",\"doi\":\"10.1007/s00894-024-06276-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>Inspired by the newly synthesized endohedral fullerene<i> T</i> CH<sub>4</sub>@C<sub>60</sub> (<b>1</b>) and based on extensive density functional theory calculations, we predict herein a series of endohedral borafullerenes <i>C</i><sub>3</sub> CH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub> (<b>4</b>), <i>T</i> BH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub><sup>–</sup> (<b>5</b>), <i>C</i><sub>1</sub> H<sub>2</sub>O@B<sub>32</sub>C<sub>36</sub> (<b>6</b>), <i>C</i><sub>3</sub> NH<sub>3</sub>@B<sub>32</sub>C<sub>36</sub> (<b>7</b>), and <i>T</i> C<sub>8</sub>@B<sub>32</sub>C<sub>36</sub><sup>2–</sup> (<b>8</b>) which possess a B<sub>32</sub>C<sub>36</sub> (<b>3</b>) shell isovalent with C<sub>60</sub>, with the neutral <i>D</i><sub><i>2</i></sub> C<sub>8</sub>@B<sub>24</sub>C<sub>44</sub> (<b>9</b>) obtained from C<sub>8</sub>@B<sub>32</sub>C<sub>36</sub><sup>2–</sup> (<b>8</b>) by symmetric C─B substitutions. Detailed adaptive natural density partitioning (AdNDP) bonding analyses and iso-chemical shielding surfaces (ICSSs) calculations indicate that these core–shell species are spherically aromatic in nature, rendering high stability to the systems. More interestingly, based on the calculated effective donor–acceptor interaction between LP(O) → LV(B@B<sub>3</sub>C<sub>3</sub>) in H<sub>2</sub>O@B<sub>32</sub>C<sub>36</sub> (<b>6</b>), we propose the concept of boron bond (BB) in chemistry which is defined as the in-phase orbital overlap between an electronegative atom A as lone-pair (LP) donor and an electron-deficient boron atom with a lone vacant (LV) orbital as LP acceptor. A boron bond appears to possess about 20 ~ 30% of the bond dissociation energy of a typical A-B covalent bond.</p><h3>Methods</h3><p>Extensive density functional theory investigations at the hybrid M06-2X-D3 and PBE0-D3 levels with the basis set 6-311 + G(d) were employed to fully optimize the structures of endohedral <i>C</i><sub>3</sub> CH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub> (<b>4</b>), <i>T</i> BH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub><sup>–</sup> (<b>5</b>), <i>C</i><sub>1</sub> H<sub>2</sub>O@B<sub>32</sub>C<sub>36</sub> (<b>6</b>), <i>C</i><sub>3</sub> NH<sub>3</sub>@B<sub>32</sub>C<sub>36</sub> (<b>7</b>), <i>T</i> C<sub>8</sub>@B<sub>32</sub>C<sub>36</sub><sup>2–</sup> (<b>8</b>), and <i>D</i><sub><i>2</i></sub> C<sub>8</sub>@B<sub>24</sub>C<sub>44</sub> (<b>9</b>), with natural bonding orbital (NBO) and adaptive natural density partitioning (AdNDP) analyses performed to analyze the bonding patterns of the concerned species and the non-covalent interactions reduced density gradient (NCI-RDG) approach utilized to identify the types of the intramolecular non-covalent bonding interactions.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"31 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06276-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06276-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

受新合成的内嵌富勒烯T CH4@C60(1)的启发,基于广泛的密度泛函理论计算,我们在此预测了一系列内嵌富勒烯C3 CH4@B32C36(4)、T BH4@B32C36 -(5)、C1 H2O@B32C36(6)、C3 NH3@B32C36(7)和T C8@B32C362 -(8),它们与C60具有B32C36(3)的壳价,并通过对称的C─B取代从C8@B32C362 -(8)得到中性的D2 C8@B24C44(9)。详细的自适应自然密度分配(AdNDP)键合分析和等化学屏蔽面(icss)计算表明,这些核-壳物质本质上是球形芳香的,使系统具有很高的稳定性。更有趣的是,基于H2O@B32C36(6)中计算的LP(O)→LV(B@B3C3)之间的有效供体-受体相互作用,我们提出了化学中硼键(BB)的概念,将其定义为电负性原子A作为孤对(LP)供体与具有孤空(LV)轨道的缺电子硼原子作为LP受体之间的相轨道重叠。硼键似乎具有典型的A- b共价键的键解离能的20 ~ 30%。方法在M06-2X-D3和PBE0-D3杂交水平上,以6-311 + G(d)为基集,进行密度泛函理论研究,充分优化内源性C3 CH4@B32C36(4)、T BH4@B32C36 -(5)、C1 H2O@B32C36(6)、C3 NH3@B32C36(7)、T C8@B32C362 -(8)和D2 C8@B24C44(9)的结构。利用自然成键轨道(NBO)和自适应自然密度分配(AdNDP)分析了相关物种的成键模式,并利用非共价相互作用降低密度梯度(NCI-RDG)方法鉴定了分子内非共价相互作用的类型。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of endohedral borafullerenes X@B32C36 (X = CH4, BH4−, H2O, and NH3) with a B32C36 shell isovalent with C60

Context

Inspired by the newly synthesized endohedral fullerene T CH4@C60 (1) and based on extensive density functional theory calculations, we predict herein a series of endohedral borafullerenes C3 CH4@B32C36 (4), T BH4@B32C36 (5), C1 H2O@B32C36 (6), C3 NH3@B32C36 (7), and T C8@B32C362– (8) which possess a B32C36 (3) shell isovalent with C60, with the neutral D2 C8@B24C44 (9) obtained from C8@B32C362– (8) by symmetric C─B substitutions. Detailed adaptive natural density partitioning (AdNDP) bonding analyses and iso-chemical shielding surfaces (ICSSs) calculations indicate that these core–shell species are spherically aromatic in nature, rendering high stability to the systems. More interestingly, based on the calculated effective donor–acceptor interaction between LP(O) → LV(B@B3C3) in H2O@B32C36 (6), we propose the concept of boron bond (BB) in chemistry which is defined as the in-phase orbital overlap between an electronegative atom A as lone-pair (LP) donor and an electron-deficient boron atom with a lone vacant (LV) orbital as LP acceptor. A boron bond appears to possess about 20 ~ 30% of the bond dissociation energy of a typical A-B covalent bond.

Methods

Extensive density functional theory investigations at the hybrid M06-2X-D3 and PBE0-D3 levels with the basis set 6-311 + G(d) were employed to fully optimize the structures of endohedral C3 CH4@B32C36 (4), T BH4@B32C36 (5), C1 H2O@B32C36 (6), C3 NH3@B32C36 (7), T C8@B32C362– (8), and D2 C8@B24C44 (9), with natural bonding orbital (NBO) and adaptive natural density partitioning (AdNDP) analyses performed to analyze the bonding patterns of the concerned species and the non-covalent interactions reduced density gradient (NCI-RDG) approach utilized to identify the types of the intramolecular non-covalent bonding interactions.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
期刊最新文献
Computed libraries of avobenzone derivatives with sulfur groups as enhanced UVA filters The adsorption behavior at the air/water interface of saturated cardanol nonionic surfactants through molecular dynamic simulations Mechanical enhancement of hydroxyapatite via carbon and boron nitride nanotubes: a molecular dynamics study Reduction of hydrogen peroxide by amine-based diselenides: understanding the effect of substitutions on reactivity Exploring the dominant interactions: unveiling the stable structure of theobromine-water complexes through DFT and ab initio investigations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1