Ting Zhang, Cai-Yue Gao, Xiao-Ni Zhao, Gao-Yi Han, Si-Dian Li
{"title":"B32C36壳层与C60同价的内源性硼富勒烯X@B32C36 (X = CH4, BH4−,H2O和NH3)的预测","authors":"Ting Zhang, Cai-Yue Gao, Xiao-Ni Zhao, Gao-Yi Han, Si-Dian Li","doi":"10.1007/s00894-024-06276-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Inspired by the newly synthesized endohedral fullerene<i> T</i> CH<sub>4</sub>@C<sub>60</sub> (<b>1</b>) and based on extensive density functional theory calculations, we predict herein a series of endohedral borafullerenes <i>C</i><sub>3</sub> CH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub> (<b>4</b>), <i>T</i> BH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub><sup>–</sup> (<b>5</b>), <i>C</i><sub>1</sub> H<sub>2</sub>O@B<sub>32</sub>C<sub>36</sub> (<b>6</b>), <i>C</i><sub>3</sub> NH<sub>3</sub>@B<sub>32</sub>C<sub>36</sub> (<b>7</b>), and <i>T</i> C<sub>8</sub>@B<sub>32</sub>C<sub>36</sub><sup>2–</sup> (<b>8</b>) which possess a B<sub>32</sub>C<sub>36</sub> (<b>3</b>) shell isovalent with C<sub>60</sub>, with the neutral <i>D</i><sub><i>2</i></sub> C<sub>8</sub>@B<sub>24</sub>C<sub>44</sub> (<b>9</b>) obtained from C<sub>8</sub>@B<sub>32</sub>C<sub>36</sub><sup>2–</sup> (<b>8</b>) by symmetric C─B substitutions. Detailed adaptive natural density partitioning (AdNDP) bonding analyses and iso-chemical shielding surfaces (ICSSs) calculations indicate that these core–shell species are spherically aromatic in nature, rendering high stability to the systems. More interestingly, based on the calculated effective donor–acceptor interaction between LP(O) → LV(B@B<sub>3</sub>C<sub>3</sub>) in H<sub>2</sub>O@B<sub>32</sub>C<sub>36</sub> (<b>6</b>), we propose the concept of boron bond (BB) in chemistry which is defined as the in-phase orbital overlap between an electronegative atom A as lone-pair (LP) donor and an electron-deficient boron atom with a lone vacant (LV) orbital as LP acceptor. A boron bond appears to possess about 20 ~ 30% of the bond dissociation energy of a typical A-B covalent bond.</p><h3>Methods</h3><p>Extensive density functional theory investigations at the hybrid M06-2X-D3 and PBE0-D3 levels with the basis set 6-311 + G(d) were employed to fully optimize the structures of endohedral <i>C</i><sub>3</sub> CH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub> (<b>4</b>), <i>T</i> BH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub><sup>–</sup> (<b>5</b>), <i>C</i><sub>1</sub> H<sub>2</sub>O@B<sub>32</sub>C<sub>36</sub> (<b>6</b>), <i>C</i><sub>3</sub> NH<sub>3</sub>@B<sub>32</sub>C<sub>36</sub> (<b>7</b>), <i>T</i> C<sub>8</sub>@B<sub>32</sub>C<sub>36</sub><sup>2–</sup> (<b>8</b>), and <i>D</i><sub><i>2</i></sub> C<sub>8</sub>@B<sub>24</sub>C<sub>44</sub> (<b>9</b>), with natural bonding orbital (NBO) and adaptive natural density partitioning (AdNDP) analyses performed to analyze the bonding patterns of the concerned species and the non-covalent interactions reduced density gradient (NCI-RDG) approach utilized to identify the types of the intramolecular non-covalent bonding interactions.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of endohedral borafullerenes X@B32C36 (X = CH4, BH4−, H2O, and NH3) with a B32C36 shell isovalent with C60\",\"authors\":\"Ting Zhang, Cai-Yue Gao, Xiao-Ni Zhao, Gao-Yi Han, Si-Dian Li\",\"doi\":\"10.1007/s00894-024-06276-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>Inspired by the newly synthesized endohedral fullerene<i> T</i> CH<sub>4</sub>@C<sub>60</sub> (<b>1</b>) and based on extensive density functional theory calculations, we predict herein a series of endohedral borafullerenes <i>C</i><sub>3</sub> CH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub> (<b>4</b>), <i>T</i> BH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub><sup>–</sup> (<b>5</b>), <i>C</i><sub>1</sub> H<sub>2</sub>O@B<sub>32</sub>C<sub>36</sub> (<b>6</b>), <i>C</i><sub>3</sub> NH<sub>3</sub>@B<sub>32</sub>C<sub>36</sub> (<b>7</b>), and <i>T</i> C<sub>8</sub>@B<sub>32</sub>C<sub>36</sub><sup>2–</sup> (<b>8</b>) which possess a B<sub>32</sub>C<sub>36</sub> (<b>3</b>) shell isovalent with C<sub>60</sub>, with the neutral <i>D</i><sub><i>2</i></sub> C<sub>8</sub>@B<sub>24</sub>C<sub>44</sub> (<b>9</b>) obtained from C<sub>8</sub>@B<sub>32</sub>C<sub>36</sub><sup>2–</sup> (<b>8</b>) by symmetric C─B substitutions. Detailed adaptive natural density partitioning (AdNDP) bonding analyses and iso-chemical shielding surfaces (ICSSs) calculations indicate that these core–shell species are spherically aromatic in nature, rendering high stability to the systems. More interestingly, based on the calculated effective donor–acceptor interaction between LP(O) → LV(B@B<sub>3</sub>C<sub>3</sub>) in H<sub>2</sub>O@B<sub>32</sub>C<sub>36</sub> (<b>6</b>), we propose the concept of boron bond (BB) in chemistry which is defined as the in-phase orbital overlap between an electronegative atom A as lone-pair (LP) donor and an electron-deficient boron atom with a lone vacant (LV) orbital as LP acceptor. A boron bond appears to possess about 20 ~ 30% of the bond dissociation energy of a typical A-B covalent bond.</p><h3>Methods</h3><p>Extensive density functional theory investigations at the hybrid M06-2X-D3 and PBE0-D3 levels with the basis set 6-311 + G(d) were employed to fully optimize the structures of endohedral <i>C</i><sub>3</sub> CH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub> (<b>4</b>), <i>T</i> BH<sub>4</sub>@B<sub>32</sub>C<sub>36</sub><sup>–</sup> (<b>5</b>), <i>C</i><sub>1</sub> H<sub>2</sub>O@B<sub>32</sub>C<sub>36</sub> (<b>6</b>), <i>C</i><sub>3</sub> NH<sub>3</sub>@B<sub>32</sub>C<sub>36</sub> (<b>7</b>), <i>T</i> C<sub>8</sub>@B<sub>32</sub>C<sub>36</sub><sup>2–</sup> (<b>8</b>), and <i>D</i><sub><i>2</i></sub> C<sub>8</sub>@B<sub>24</sub>C<sub>44</sub> (<b>9</b>), with natural bonding orbital (NBO) and adaptive natural density partitioning (AdNDP) analyses performed to analyze the bonding patterns of the concerned species and the non-covalent interactions reduced density gradient (NCI-RDG) approach utilized to identify the types of the intramolecular non-covalent bonding interactions.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"31 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06276-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06276-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Prediction of endohedral borafullerenes X@B32C36 (X = CH4, BH4−, H2O, and NH3) with a B32C36 shell isovalent with C60
Context
Inspired by the newly synthesized endohedral fullerene T CH4@C60 (1) and based on extensive density functional theory calculations, we predict herein a series of endohedral borafullerenes C3 CH4@B32C36 (4), T BH4@B32C36– (5), C1 H2O@B32C36 (6), C3 NH3@B32C36 (7), and T C8@B32C362– (8) which possess a B32C36 (3) shell isovalent with C60, with the neutral D2 C8@B24C44 (9) obtained from C8@B32C362– (8) by symmetric C─B substitutions. Detailed adaptive natural density partitioning (AdNDP) bonding analyses and iso-chemical shielding surfaces (ICSSs) calculations indicate that these core–shell species are spherically aromatic in nature, rendering high stability to the systems. More interestingly, based on the calculated effective donor–acceptor interaction between LP(O) → LV(B@B3C3) in H2O@B32C36 (6), we propose the concept of boron bond (BB) in chemistry which is defined as the in-phase orbital overlap between an electronegative atom A as lone-pair (LP) donor and an electron-deficient boron atom with a lone vacant (LV) orbital as LP acceptor. A boron bond appears to possess about 20 ~ 30% of the bond dissociation energy of a typical A-B covalent bond.
Methods
Extensive density functional theory investigations at the hybrid M06-2X-D3 and PBE0-D3 levels with the basis set 6-311 + G(d) were employed to fully optimize the structures of endohedral C3 CH4@B32C36 (4), T BH4@B32C36– (5), C1 H2O@B32C36 (6), C3 NH3@B32C36 (7), T C8@B32C362– (8), and D2 C8@B24C44 (9), with natural bonding orbital (NBO) and adaptive natural density partitioning (AdNDP) analyses performed to analyze the bonding patterns of the concerned species and the non-covalent interactions reduced density gradient (NCI-RDG) approach utilized to identify the types of the intramolecular non-covalent bonding interactions.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.