Kaj Pettersson, Albin Nordlander, Angela Sasic Kalagasidis, Oskar Modin, Dario Maggiolo
{"title":"含随机吸附剂的多孔介质中污染物流动动力学","authors":"Kaj Pettersson, Albin Nordlander, Angela Sasic Kalagasidis, Oskar Modin, Dario Maggiolo","doi":"10.1007/s11242-025-02150-y","DOIUrl":null,"url":null,"abstract":"<div><p>Many porous media are mixtures of inert and reactive materials, manifesting spatio-chemical heterogeneity. We study the evolution of scalar transport in a chemically heterogeneous material that mimics a green roof soil substrate, fractionally composed of inert and reactive adsorbing particles. These adsorbing particles are equivalent to biochar within a real soil substrate. The scalar transport evolution is determined using experiments and simulations calibrated from experimental data. Experiment 1 is used to determine the equilibrium capacity and adsorption rate of two biochar types when immersed in a methylene blue solution. Breakthrough curves of a packed bed of glass beads with randomly interspersed biochar are determined in experiment 2. Simulations are then run to investigate the solute transport and adsorption dynamics at the pore-scale. An analytical model is proposed to capture the behavior of the biochar adsorption capacity, and the simulation results are compared with experiment 2. A pore-scale analysis showed that uniformly sized beds are superior in contaminant breakthrough reduction, which is related to the adsorptive surface area and the rate at which adsorption capacity is reached. Cases using the adsorption capacity model display a tight distribution of particle surface concentration at later simulation times, indicating maximum possible adsorption. The beds with dissimilar particle sizes create more channeling effects which reduce adsorptive particle efficiency and consequently higher breakthrough concentration profiles. Comparison between experiments and simulations show good agreement. Improved biochar performance can be achieved by maintaining particle size uniformity alongside high adsorption capacity and adsorption rates appropriate to the rainfall intensity.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-025-02150-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Contaminant Flow Through Porous Media Containing Random Adsorbers\",\"authors\":\"Kaj Pettersson, Albin Nordlander, Angela Sasic Kalagasidis, Oskar Modin, Dario Maggiolo\",\"doi\":\"10.1007/s11242-025-02150-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many porous media are mixtures of inert and reactive materials, manifesting spatio-chemical heterogeneity. We study the evolution of scalar transport in a chemically heterogeneous material that mimics a green roof soil substrate, fractionally composed of inert and reactive adsorbing particles. These adsorbing particles are equivalent to biochar within a real soil substrate. The scalar transport evolution is determined using experiments and simulations calibrated from experimental data. Experiment 1 is used to determine the equilibrium capacity and adsorption rate of two biochar types when immersed in a methylene blue solution. Breakthrough curves of a packed bed of glass beads with randomly interspersed biochar are determined in experiment 2. Simulations are then run to investigate the solute transport and adsorption dynamics at the pore-scale. An analytical model is proposed to capture the behavior of the biochar adsorption capacity, and the simulation results are compared with experiment 2. A pore-scale analysis showed that uniformly sized beds are superior in contaminant breakthrough reduction, which is related to the adsorptive surface area and the rate at which adsorption capacity is reached. Cases using the adsorption capacity model display a tight distribution of particle surface concentration at later simulation times, indicating maximum possible adsorption. The beds with dissimilar particle sizes create more channeling effects which reduce adsorptive particle efficiency and consequently higher breakthrough concentration profiles. Comparison between experiments and simulations show good agreement. Improved biochar performance can be achieved by maintaining particle size uniformity alongside high adsorption capacity and adsorption rates appropriate to the rainfall intensity.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":\"152 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11242-025-02150-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-025-02150-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-025-02150-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Dynamics of Contaminant Flow Through Porous Media Containing Random Adsorbers
Many porous media are mixtures of inert and reactive materials, manifesting spatio-chemical heterogeneity. We study the evolution of scalar transport in a chemically heterogeneous material that mimics a green roof soil substrate, fractionally composed of inert and reactive adsorbing particles. These adsorbing particles are equivalent to biochar within a real soil substrate. The scalar transport evolution is determined using experiments and simulations calibrated from experimental data. Experiment 1 is used to determine the equilibrium capacity and adsorption rate of two biochar types when immersed in a methylene blue solution. Breakthrough curves of a packed bed of glass beads with randomly interspersed biochar are determined in experiment 2. Simulations are then run to investigate the solute transport and adsorption dynamics at the pore-scale. An analytical model is proposed to capture the behavior of the biochar adsorption capacity, and the simulation results are compared with experiment 2. A pore-scale analysis showed that uniformly sized beds are superior in contaminant breakthrough reduction, which is related to the adsorptive surface area and the rate at which adsorption capacity is reached. Cases using the adsorption capacity model display a tight distribution of particle surface concentration at later simulation times, indicating maximum possible adsorption. The beds with dissimilar particle sizes create more channeling effects which reduce adsorptive particle efficiency and consequently higher breakthrough concentration profiles. Comparison between experiments and simulations show good agreement. Improved biochar performance can be achieved by maintaining particle size uniformity alongside high adsorption capacity and adsorption rates appropriate to the rainfall intensity.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).