含随机吸附剂的多孔介质中污染物流动动力学

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Transport in Porous Media Pub Date : 2025-01-22 DOI:10.1007/s11242-025-02150-y
Kaj Pettersson, Albin Nordlander, Angela Sasic Kalagasidis, Oskar Modin, Dario Maggiolo
{"title":"含随机吸附剂的多孔介质中污染物流动动力学","authors":"Kaj Pettersson,&nbsp;Albin Nordlander,&nbsp;Angela Sasic Kalagasidis,&nbsp;Oskar Modin,&nbsp;Dario Maggiolo","doi":"10.1007/s11242-025-02150-y","DOIUrl":null,"url":null,"abstract":"<div><p>Many porous media are mixtures of inert and reactive materials, manifesting spatio-chemical heterogeneity. We study the evolution of scalar transport in a chemically heterogeneous material that mimics a green roof soil substrate, fractionally composed of inert and reactive adsorbing particles. These adsorbing particles are equivalent to biochar within a real soil substrate. The scalar transport evolution is determined using experiments and simulations calibrated from experimental data. Experiment 1 is used to determine the equilibrium capacity and adsorption rate of two biochar types when immersed in a methylene blue solution. Breakthrough curves of a packed bed of glass beads with randomly interspersed biochar are determined in experiment 2. Simulations are then run to investigate the solute transport and adsorption dynamics at the pore-scale. An analytical model is proposed to capture the behavior of the biochar adsorption capacity, and the simulation results are compared with experiment 2. A pore-scale analysis showed that uniformly sized beds are superior in contaminant breakthrough reduction, which is related to the adsorptive surface area and the rate at which adsorption capacity is reached. Cases using the adsorption capacity model display a tight distribution of particle surface concentration at later simulation times, indicating maximum possible adsorption. The beds with dissimilar particle sizes create more channeling effects which reduce adsorptive particle efficiency and consequently higher breakthrough concentration profiles. Comparison between experiments and simulations show good agreement. Improved biochar performance can be achieved by maintaining particle size uniformity alongside high adsorption capacity and adsorption rates appropriate to the rainfall intensity.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-025-02150-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Contaminant Flow Through Porous Media Containing Random Adsorbers\",\"authors\":\"Kaj Pettersson,&nbsp;Albin Nordlander,&nbsp;Angela Sasic Kalagasidis,&nbsp;Oskar Modin,&nbsp;Dario Maggiolo\",\"doi\":\"10.1007/s11242-025-02150-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many porous media are mixtures of inert and reactive materials, manifesting spatio-chemical heterogeneity. We study the evolution of scalar transport in a chemically heterogeneous material that mimics a green roof soil substrate, fractionally composed of inert and reactive adsorbing particles. These adsorbing particles are equivalent to biochar within a real soil substrate. The scalar transport evolution is determined using experiments and simulations calibrated from experimental data. Experiment 1 is used to determine the equilibrium capacity and adsorption rate of two biochar types when immersed in a methylene blue solution. Breakthrough curves of a packed bed of glass beads with randomly interspersed biochar are determined in experiment 2. Simulations are then run to investigate the solute transport and adsorption dynamics at the pore-scale. An analytical model is proposed to capture the behavior of the biochar adsorption capacity, and the simulation results are compared with experiment 2. A pore-scale analysis showed that uniformly sized beds are superior in contaminant breakthrough reduction, which is related to the adsorptive surface area and the rate at which adsorption capacity is reached. Cases using the adsorption capacity model display a tight distribution of particle surface concentration at later simulation times, indicating maximum possible adsorption. The beds with dissimilar particle sizes create more channeling effects which reduce adsorptive particle efficiency and consequently higher breakthrough concentration profiles. Comparison between experiments and simulations show good agreement. Improved biochar performance can be achieved by maintaining particle size uniformity alongside high adsorption capacity and adsorption rates appropriate to the rainfall intensity.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":\"152 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11242-025-02150-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-025-02150-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-025-02150-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

许多多孔介质是惰性物质和活性物质的混合物,表现出空间化学异质性。我们研究了一种化学非均质材料中标量输运的演变,这种材料模拟了绿色屋顶土壤基质,部分由惰性和活性吸附颗粒组成。这些吸附颗粒相当于真正土壤基质中的生物炭。标量输运演化是通过实验和根据实验数据校准的模拟来确定的。实验1测定了两种生物炭在亚甲基蓝溶液中的平衡容量和吸附速率。实验2确定了随机散布生物炭的玻璃微珠填充床的突破曲线。然后运行模拟来研究溶质在孔隙尺度上的迁移和吸附动力学。建立了生物炭吸附性能的解析模型,并将模拟结果与实验2进行了比较。孔隙尺度分析表明,粒径均匀的床层在减少污染物突破方面具有优势,这与吸附表面积和达到吸附容量的速度有关。使用吸附容量模型的情况下,在随后的模拟时间内,颗粒表面浓度分布紧密,表明最大可能的吸附。不同粒径的床层会产生更多的通道效应,从而降低吸附颗粒效率,从而提高突破浓度曲线。实验结果与仿真结果吻合较好。提高生物炭性能可以通过保持粒度均匀性以及高吸附能力和适合降雨强度的吸附率来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamics of Contaminant Flow Through Porous Media Containing Random Adsorbers

Many porous media are mixtures of inert and reactive materials, manifesting spatio-chemical heterogeneity. We study the evolution of scalar transport in a chemically heterogeneous material that mimics a green roof soil substrate, fractionally composed of inert and reactive adsorbing particles. These adsorbing particles are equivalent to biochar within a real soil substrate. The scalar transport evolution is determined using experiments and simulations calibrated from experimental data. Experiment 1 is used to determine the equilibrium capacity and adsorption rate of two biochar types when immersed in a methylene blue solution. Breakthrough curves of a packed bed of glass beads with randomly interspersed biochar are determined in experiment 2. Simulations are then run to investigate the solute transport and adsorption dynamics at the pore-scale. An analytical model is proposed to capture the behavior of the biochar adsorption capacity, and the simulation results are compared with experiment 2. A pore-scale analysis showed that uniformly sized beds are superior in contaminant breakthrough reduction, which is related to the adsorptive surface area and the rate at which adsorption capacity is reached. Cases using the adsorption capacity model display a tight distribution of particle surface concentration at later simulation times, indicating maximum possible adsorption. The beds with dissimilar particle sizes create more channeling effects which reduce adsorptive particle efficiency and consequently higher breakthrough concentration profiles. Comparison between experiments and simulations show good agreement. Improved biochar performance can be achieved by maintaining particle size uniformity alongside high adsorption capacity and adsorption rates appropriate to the rainfall intensity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
期刊最新文献
Dynamics of Contaminant Flow Through Porous Media Containing Random Adsorbers Numerical Analysis of Liquid Jet Impingement through Confined Uniform Cooling Channels Employing Porous Metal Foams Exploring Effective Diffusion Coefficients in Water-Saturated Reservoir Rocks via the Pressure Decay Technique: Implications for Underground Hydrogen Storage Kelvin–Voigt Fluid Models in Double-Diffusive Porous Convection Pore-space partitioning in geological porous media using the curvature of the distance map
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1