Xiaobin Zhang, Zhifang Liu, Jianyin Lei, Shiqiang Li
{"title":"具有可调压扭耦合变形的梯度超材料","authors":"Xiaobin Zhang, Zhifang Liu, Jianyin Lei, Shiqiang Li","doi":"10.1007/s00707-024-04159-8","DOIUrl":null,"url":null,"abstract":"<div><p>Compression-twist metamaterials exhibit unique properties of compression-induced twisting, presenting new possibilities for the development of smart materials. However, achieving multifunctionality solely through conventional configuration design and parametric studies of individual cells is relatively constrained. Gradient metamaterials, which are characterized by continuous spatial variation in physical and mechanical properties through the gradient design of geometric parameters, offer a promising approach for development multifunctional and smart materials. In this study, a novel 3D gradient compression-twist metamaterial (GCTMM) is proposed, with its mechanical properties and deformation mechanisms under in-plane compression investigated by theoretical analysis, experiment, and numerical simulations. The experimental and simulation results demonstrate a nonlinear relationship between the twist angle and compressive displacement. The height and number of cell layers influence the overall stiffness of the GCTMM and affect the deformation coordination between layers. The structure’s compression-twist coupling properties are significantly reduced due to the plastic yield of the inclined rods. Analytical models were developed to describe the twist angle and initial yield displacement, accurately predicting the nonlinear variation in compression-twist coupling behavior and the degradation of the mechanical performance. To enhance structural reliability, an improved GCTMM with protective support columns was designed and analyzed through numerical simulations. The results indicate that the maximum stress within the structure remains below the material’s yield strength, ensuring its reliability and durability. These findings offer valuable insights for the design of gradient buffer materials, the development of mechanical signal enhancement or conversion devices, and the creation of multistage signal transmission sensors.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"236 1","pages":"357 - 379"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient metamaterials with tunable compression-twist coupling deformation\",\"authors\":\"Xiaobin Zhang, Zhifang Liu, Jianyin Lei, Shiqiang Li\",\"doi\":\"10.1007/s00707-024-04159-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compression-twist metamaterials exhibit unique properties of compression-induced twisting, presenting new possibilities for the development of smart materials. However, achieving multifunctionality solely through conventional configuration design and parametric studies of individual cells is relatively constrained. Gradient metamaterials, which are characterized by continuous spatial variation in physical and mechanical properties through the gradient design of geometric parameters, offer a promising approach for development multifunctional and smart materials. In this study, a novel 3D gradient compression-twist metamaterial (GCTMM) is proposed, with its mechanical properties and deformation mechanisms under in-plane compression investigated by theoretical analysis, experiment, and numerical simulations. The experimental and simulation results demonstrate a nonlinear relationship between the twist angle and compressive displacement. The height and number of cell layers influence the overall stiffness of the GCTMM and affect the deformation coordination between layers. The structure’s compression-twist coupling properties are significantly reduced due to the plastic yield of the inclined rods. Analytical models were developed to describe the twist angle and initial yield displacement, accurately predicting the nonlinear variation in compression-twist coupling behavior and the degradation of the mechanical performance. To enhance structural reliability, an improved GCTMM with protective support columns was designed and analyzed through numerical simulations. The results indicate that the maximum stress within the structure remains below the material’s yield strength, ensuring its reliability and durability. These findings offer valuable insights for the design of gradient buffer materials, the development of mechanical signal enhancement or conversion devices, and the creation of multistage signal transmission sensors.</p></div>\",\"PeriodicalId\":456,\"journal\":{\"name\":\"Acta Mechanica\",\"volume\":\"236 1\",\"pages\":\"357 - 379\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00707-024-04159-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-024-04159-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Gradient metamaterials with tunable compression-twist coupling deformation
Compression-twist metamaterials exhibit unique properties of compression-induced twisting, presenting new possibilities for the development of smart materials. However, achieving multifunctionality solely through conventional configuration design and parametric studies of individual cells is relatively constrained. Gradient metamaterials, which are characterized by continuous spatial variation in physical and mechanical properties through the gradient design of geometric parameters, offer a promising approach for development multifunctional and smart materials. In this study, a novel 3D gradient compression-twist metamaterial (GCTMM) is proposed, with its mechanical properties and deformation mechanisms under in-plane compression investigated by theoretical analysis, experiment, and numerical simulations. The experimental and simulation results demonstrate a nonlinear relationship between the twist angle and compressive displacement. The height and number of cell layers influence the overall stiffness of the GCTMM and affect the deformation coordination between layers. The structure’s compression-twist coupling properties are significantly reduced due to the plastic yield of the inclined rods. Analytical models were developed to describe the twist angle and initial yield displacement, accurately predicting the nonlinear variation in compression-twist coupling behavior and the degradation of the mechanical performance. To enhance structural reliability, an improved GCTMM with protective support columns was designed and analyzed through numerical simulations. The results indicate that the maximum stress within the structure remains below the material’s yield strength, ensuring its reliability and durability. These findings offer valuable insights for the design of gradient buffer materials, the development of mechanical signal enhancement or conversion devices, and the creation of multistage signal transmission sensors.
期刊介绍:
Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.