{"title":"具有多面效应的正交各向异性压电准晶体中SH波和反平面SH波的力学","authors":"Seema, Abhinav Singhal","doi":"10.1007/s00707-024-04162-z","DOIUrl":null,"url":null,"abstract":"<div><p>Significant restrictions have been found in the selection of piezoelectric materials and the direction of wave propagation in earlier studies on surface acoustic wave sensors. The primary goal of the current work is to investigate how wave propagation direction influences the performance of SAW macro- and nano-sensors in an effort to remove such barriers in the technological revolution of SAW sensors. A proposed model is established to study Shear Horizontal (SH) and anti-plane SH wave propagation in piezoelectric materials with surface effects. The theoretical forms are constructed and used to present the wavenumber of surface waves in any direction of the piezoelectric medium, based on the Extended Stroh formalism. In addition, we take into account surface elasticity theory in order to obtain the phase velocity equation based on the wavenumber expression. The model incorporates surface elasticity, piezoelectricity, and permittivity to account for nanoscale surface phenomena. Two configurations are examined: an orthotropic piezoelectric material layer over an elastic framework and a piezoelectric material half-space with a nano substrate. Analytical expressions for frequency equations are derived for both symmetric and anti-symmetric waves. Numerical results highlight the critical thickness of the piezoelectric layer, where surface energy significantly influences dispersion properties. The effects of surface elasticity and density on wave velocity are analyzed, revealing a spring force-like influence on boundaries. The research investigates SH wave transmission in anisotropic, transversely isotropic piezoelectric nanostructures. The findings could aid in designing SAW devices and piezoelectric sensors, as well as producing more effective surface acoustic wave sensors, based on recent theoretical work summaries.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"236 1","pages":"439 - 456"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanics of SH and anti-plane SH waves in orthotropic piezoelectric quasicrystal with multiple surface effect\",\"authors\":\"Seema, Abhinav Singhal\",\"doi\":\"10.1007/s00707-024-04162-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Significant restrictions have been found in the selection of piezoelectric materials and the direction of wave propagation in earlier studies on surface acoustic wave sensors. The primary goal of the current work is to investigate how wave propagation direction influences the performance of SAW macro- and nano-sensors in an effort to remove such barriers in the technological revolution of SAW sensors. A proposed model is established to study Shear Horizontal (SH) and anti-plane SH wave propagation in piezoelectric materials with surface effects. The theoretical forms are constructed and used to present the wavenumber of surface waves in any direction of the piezoelectric medium, based on the Extended Stroh formalism. In addition, we take into account surface elasticity theory in order to obtain the phase velocity equation based on the wavenumber expression. The model incorporates surface elasticity, piezoelectricity, and permittivity to account for nanoscale surface phenomena. Two configurations are examined: an orthotropic piezoelectric material layer over an elastic framework and a piezoelectric material half-space with a nano substrate. Analytical expressions for frequency equations are derived for both symmetric and anti-symmetric waves. Numerical results highlight the critical thickness of the piezoelectric layer, where surface energy significantly influences dispersion properties. The effects of surface elasticity and density on wave velocity are analyzed, revealing a spring force-like influence on boundaries. The research investigates SH wave transmission in anisotropic, transversely isotropic piezoelectric nanostructures. The findings could aid in designing SAW devices and piezoelectric sensors, as well as producing more effective surface acoustic wave sensors, based on recent theoretical work summaries.</p></div>\",\"PeriodicalId\":456,\"journal\":{\"name\":\"Acta Mechanica\",\"volume\":\"236 1\",\"pages\":\"439 - 456\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00707-024-04162-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-024-04162-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Mechanics of SH and anti-plane SH waves in orthotropic piezoelectric quasicrystal with multiple surface effect
Significant restrictions have been found in the selection of piezoelectric materials and the direction of wave propagation in earlier studies on surface acoustic wave sensors. The primary goal of the current work is to investigate how wave propagation direction influences the performance of SAW macro- and nano-sensors in an effort to remove such barriers in the technological revolution of SAW sensors. A proposed model is established to study Shear Horizontal (SH) and anti-plane SH wave propagation in piezoelectric materials with surface effects. The theoretical forms are constructed and used to present the wavenumber of surface waves in any direction of the piezoelectric medium, based on the Extended Stroh formalism. In addition, we take into account surface elasticity theory in order to obtain the phase velocity equation based on the wavenumber expression. The model incorporates surface elasticity, piezoelectricity, and permittivity to account for nanoscale surface phenomena. Two configurations are examined: an orthotropic piezoelectric material layer over an elastic framework and a piezoelectric material half-space with a nano substrate. Analytical expressions for frequency equations are derived for both symmetric and anti-symmetric waves. Numerical results highlight the critical thickness of the piezoelectric layer, where surface energy significantly influences dispersion properties. The effects of surface elasticity and density on wave velocity are analyzed, revealing a spring force-like influence on boundaries. The research investigates SH wave transmission in anisotropic, transversely isotropic piezoelectric nanostructures. The findings could aid in designing SAW devices and piezoelectric sensors, as well as producing more effective surface acoustic wave sensors, based on recent theoretical work summaries.
期刊介绍:
Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.