{"title":"具有二维PSH网络的FGP夹层微束在ad原子-衬底相互作用下的非局部响应预测","authors":"Yahia Maiza, Hicham Bourouina","doi":"10.1007/s00707-024-04149-w","DOIUrl":null,"url":null,"abstract":"<div><p>The present research contribution investigates a molecular resonant system’s adsorption-induced relative resonant frequency shift, considering the quality of distributed adatoms, the effect of shear distortion, and small-scale effects using non-local elasticity theory. We considered the structure’s several properties of perforation, sandwich, FGM, and porosity. The nanobeam structure can be considered a one-dimensional multi-property system. Using Eringen’s theory of elasticity, small-scale behaviour is modelled. To find the total energy transformation, the substrate-adatom energy and the adatom-adatom energy were calculated based on the van der Waals (vdW) interactions in the framework of the Morse potential and the Lennard–Jones (6–12) potential. The shear beam model (SBM) and the Euler beam model (EBM) were deduced by relying on the mechanical equations and modifying the coupled system equations. Computation was analysed analytically via the Navier-Type solution and numerically using the differential quadrature method. The SBM and EBM yield distinct relative frequency shifts, highlighting the importance of considering shear effects. The results indicate a significant dependency of the resonant frequency shift on the nanobeam’s structural properties and external conditions. This study provides a comprehensive understanding of the dynamic behaviour of multi-property nanobeams under various conditions. The findings can be applied to the design of advanced detection microdevices and microsensors.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"236 1","pages":"259 - 288"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-local response prediction for FGP sandwich microbeam with 2D PSH network subjected to adatoms-substrate interactions and exited by magnetic intensity\",\"authors\":\"Yahia Maiza, Hicham Bourouina\",\"doi\":\"10.1007/s00707-024-04149-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present research contribution investigates a molecular resonant system’s adsorption-induced relative resonant frequency shift, considering the quality of distributed adatoms, the effect of shear distortion, and small-scale effects using non-local elasticity theory. We considered the structure’s several properties of perforation, sandwich, FGM, and porosity. The nanobeam structure can be considered a one-dimensional multi-property system. Using Eringen’s theory of elasticity, small-scale behaviour is modelled. To find the total energy transformation, the substrate-adatom energy and the adatom-adatom energy were calculated based on the van der Waals (vdW) interactions in the framework of the Morse potential and the Lennard–Jones (6–12) potential. The shear beam model (SBM) and the Euler beam model (EBM) were deduced by relying on the mechanical equations and modifying the coupled system equations. Computation was analysed analytically via the Navier-Type solution and numerically using the differential quadrature method. The SBM and EBM yield distinct relative frequency shifts, highlighting the importance of considering shear effects. The results indicate a significant dependency of the resonant frequency shift on the nanobeam’s structural properties and external conditions. This study provides a comprehensive understanding of the dynamic behaviour of multi-property nanobeams under various conditions. The findings can be applied to the design of advanced detection microdevices and microsensors.</p></div>\",\"PeriodicalId\":456,\"journal\":{\"name\":\"Acta Mechanica\",\"volume\":\"236 1\",\"pages\":\"259 - 288\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00707-024-04149-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-024-04149-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Non-local response prediction for FGP sandwich microbeam with 2D PSH network subjected to adatoms-substrate interactions and exited by magnetic intensity
The present research contribution investigates a molecular resonant system’s adsorption-induced relative resonant frequency shift, considering the quality of distributed adatoms, the effect of shear distortion, and small-scale effects using non-local elasticity theory. We considered the structure’s several properties of perforation, sandwich, FGM, and porosity. The nanobeam structure can be considered a one-dimensional multi-property system. Using Eringen’s theory of elasticity, small-scale behaviour is modelled. To find the total energy transformation, the substrate-adatom energy and the adatom-adatom energy were calculated based on the van der Waals (vdW) interactions in the framework of the Morse potential and the Lennard–Jones (6–12) potential. The shear beam model (SBM) and the Euler beam model (EBM) were deduced by relying on the mechanical equations and modifying the coupled system equations. Computation was analysed analytically via the Navier-Type solution and numerically using the differential quadrature method. The SBM and EBM yield distinct relative frequency shifts, highlighting the importance of considering shear effects. The results indicate a significant dependency of the resonant frequency shift on the nanobeam’s structural properties and external conditions. This study provides a comprehensive understanding of the dynamic behaviour of multi-property nanobeams under various conditions. The findings can be applied to the design of advanced detection microdevices and microsensors.
期刊介绍:
Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.