Ke Han, Rui Li, Yule Lu, Xin Sun, Jie Cui, Yin-Zhu Wang, Yong Wang, Hao Lv, Yonghong Hu, Li Mi
{"title":"液-液界面大乳液(ME)生物反应器中不溶性高分子量多环芳烃的生物降解","authors":"Ke Han, Rui Li, Yule Lu, Xin Sun, Jie Cui, Yin-Zhu Wang, Yong Wang, Hao Lv, Yonghong Hu, Li Mi","doi":"10.1021/acsami.4c20707","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), <i>n</i>-butanol, corn oil, and <i>Burkholderia vietnamiensis</i> (<i>BVs</i>) to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface. Furthermore, the fluorescence images showed that the <i>BVs</i> were adsorbed on the surface of the MEs, increasing the contact frequency and interactions between pyrene and <i>BVs</i>. Meanwhile, the degradation efficiency of the prepared ME bioreactor was improved by up to 198% compared to that of the conventional surfactant. Therefore, the constructed ME bioreactors can provide green guidance for HMW-PAH biodegradation in industrial wastewater and environmental remediation.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"6116-6124"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Biodegradation of Insoluble High Molecular Weight Polycyclic Aromatic Hydrocarbons in Macroemulsion (ME) Bioreactors with a Liquid-Liquid Interface.\",\"authors\":\"Ke Han, Rui Li, Yule Lu, Xin Sun, Jie Cui, Yin-Zhu Wang, Yong Wang, Hao Lv, Yonghong Hu, Li Mi\",\"doi\":\"10.1021/acsami.4c20707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), <i>n</i>-butanol, corn oil, and <i>Burkholderia vietnamiensis</i> (<i>BVs</i>) to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface. Furthermore, the fluorescence images showed that the <i>BVs</i> were adsorbed on the surface of the MEs, increasing the contact frequency and interactions between pyrene and <i>BVs</i>. Meanwhile, the degradation efficiency of the prepared ME bioreactor was improved by up to 198% compared to that of the conventional surfactant. Therefore, the constructed ME bioreactors can provide green guidance for HMW-PAH biodegradation in industrial wastewater and environmental remediation.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"6116-6124\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c20707\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c20707","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing Biodegradation of Insoluble High Molecular Weight Polycyclic Aromatic Hydrocarbons in Macroemulsion (ME) Bioreactors with a Liquid-Liquid Interface.
Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), n-butanol, corn oil, and Burkholderia vietnamiensis (BVs) to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface. Furthermore, the fluorescence images showed that the BVs were adsorbed on the surface of the MEs, increasing the contact frequency and interactions between pyrene and BVs. Meanwhile, the degradation efficiency of the prepared ME bioreactor was improved by up to 198% compared to that of the conventional surfactant. Therefore, the constructed ME bioreactors can provide green guidance for HMW-PAH biodegradation in industrial wastewater and environmental remediation.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.