α-突触核蛋白原纤维种子大小依赖性细胞内化机制的解读。

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2025-01-21 Epub Date: 2025-01-06 DOI:10.1021/acs.biochem.4c00667
Arunima Sakunthala, Samir K Maji
{"title":"α-突触核蛋白原纤维种子大小依赖性细胞内化机制的解读。","authors":"Arunima Sakunthala, Samir K Maji","doi":"10.1021/acs.biochem.4c00667","DOIUrl":null,"url":null,"abstract":"<p><p>Aggregation of α-synuclein (α-Syn) and Lewy body (LB) formation are the key pathological events implicated in Parkinson's disease (PD) that spread in a prion-like manner. However, biophysical and structural characteristics of toxic α-Syn species and molecular events that drive early events in the propagation of α-Syn amyloids in a prion-like manner remain elusive. We used a neuronal cell model to demonstrate the size-dependent native biological activities of α-Syn fibril seeds. Biophysical characterization of the fibril seeds generated by controlled fragmentation indicated that increased fragmentation leads to a reduction in fibril size, correlating directly with the extent of fragmentation events. Although the size-based complexity of amyloid fibrils modulates their biological activities and fibril amplification pathways, it remains unclear how the variability of fibril seed size dictates its specific uptake mechanism into the cells. The present study elucidates the mechanism of α-Syn fibril internalization and how it is regulated by the size of fibril seeds. Further, we demonstrate that size-dependent endocytic pathways (dynamin-dependent clathrin/caveolin-mediated) are more prominent for the differential uptake of short fibril seeds compared to their longer counterparts. This size-dependent preference might contribute to the enhanced uptake and transcellular propagation of short α-Syn fibril seeds in a prion-like manner. Overall, the present study suggests that the physical dimension of α-Syn amyloid fibril seeds significantly influences their cellular uptake and pathological responses in the initiation and progression of PD.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":"64 2","pages":"377-400"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Seed Size-Dependent Cellular Internalization Mechanism for α-Synuclein Fibrils.\",\"authors\":\"Arunima Sakunthala, Samir K Maji\",\"doi\":\"10.1021/acs.biochem.4c00667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aggregation of α-synuclein (α-Syn) and Lewy body (LB) formation are the key pathological events implicated in Parkinson's disease (PD) that spread in a prion-like manner. However, biophysical and structural characteristics of toxic α-Syn species and molecular events that drive early events in the propagation of α-Syn amyloids in a prion-like manner remain elusive. We used a neuronal cell model to demonstrate the size-dependent native biological activities of α-Syn fibril seeds. Biophysical characterization of the fibril seeds generated by controlled fragmentation indicated that increased fragmentation leads to a reduction in fibril size, correlating directly with the extent of fragmentation events. Although the size-based complexity of amyloid fibrils modulates their biological activities and fibril amplification pathways, it remains unclear how the variability of fibril seed size dictates its specific uptake mechanism into the cells. The present study elucidates the mechanism of α-Syn fibril internalization and how it is regulated by the size of fibril seeds. Further, we demonstrate that size-dependent endocytic pathways (dynamin-dependent clathrin/caveolin-mediated) are more prominent for the differential uptake of short fibril seeds compared to their longer counterparts. This size-dependent preference might contribute to the enhanced uptake and transcellular propagation of short α-Syn fibril seeds in a prion-like manner. Overall, the present study suggests that the physical dimension of α-Syn amyloid fibril seeds significantly influences their cellular uptake and pathological responses in the initiation and progression of PD.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\"64 2\",\"pages\":\"377-400\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00667\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00667","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

α-突触核蛋白(α-Syn)的聚集和路易体(LB)的形成是帕金森病(PD)以朊病毒样方式传播的关键病理事件。然而,毒性α-Syn物种的生物物理和结构特征以及驱动α-Syn淀粉样蛋白以朊病毒样方式繁殖的早期事件的分子事件仍然难以捉摸。我们使用神经细胞模型来证明α-Syn原纤维种子的大小依赖性天然生物活性。通过控制破碎产生的原纤维种子的生物物理特性表明,破碎增加导致原纤维大小减小,这与破碎事件的程度直接相关。尽管淀粉样原纤维的大小复杂性调节了它们的生物活性和原纤维扩增途径,但仍不清楚原纤维种子大小的可变性如何决定其进入细胞的特定摄取机制。本研究阐明了α-Syn原纤维内化的机制及其受原纤维种子大小的调控。此外,我们证明了大小依赖的内吞途径(动力蛋白依赖的网格蛋白/小窝蛋白介导)对于短纤维种子的差异摄取比它们的长纤维种子更突出。这种大小依赖的偏好可能有助于短α-Syn纤维种子以朊病毒样的方式增强摄取和跨细胞繁殖。综上所述,本研究提示α-Syn淀粉样蛋白种子的物理尺寸显著影响其在PD发生和进展中的细胞摄取和病理反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deciphering the Seed Size-Dependent Cellular Internalization Mechanism for α-Synuclein Fibrils.

Aggregation of α-synuclein (α-Syn) and Lewy body (LB) formation are the key pathological events implicated in Parkinson's disease (PD) that spread in a prion-like manner. However, biophysical and structural characteristics of toxic α-Syn species and molecular events that drive early events in the propagation of α-Syn amyloids in a prion-like manner remain elusive. We used a neuronal cell model to demonstrate the size-dependent native biological activities of α-Syn fibril seeds. Biophysical characterization of the fibril seeds generated by controlled fragmentation indicated that increased fragmentation leads to a reduction in fibril size, correlating directly with the extent of fragmentation events. Although the size-based complexity of amyloid fibrils modulates their biological activities and fibril amplification pathways, it remains unclear how the variability of fibril seed size dictates its specific uptake mechanism into the cells. The present study elucidates the mechanism of α-Syn fibril internalization and how it is regulated by the size of fibril seeds. Further, we demonstrate that size-dependent endocytic pathways (dynamin-dependent clathrin/caveolin-mediated) are more prominent for the differential uptake of short fibril seeds compared to their longer counterparts. This size-dependent preference might contribute to the enhanced uptake and transcellular propagation of short α-Syn fibril seeds in a prion-like manner. Overall, the present study suggests that the physical dimension of α-Syn amyloid fibril seeds significantly influences their cellular uptake and pathological responses in the initiation and progression of PD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
How Ligands Achieve Biased Signaling toward Arrestins. Pre-Steady-State Kinetic Studies of Nucleotide Incorporation into a Single-Nucleotide Gapped DNA Substrate Catalyzed by Human DNA Polymerase β. Distinct Acyl Carrier Protein Docking Sites Help Mediate the Opposite Stereoselectivities of A- and B-type Modular Polyketide Synthase Ketoreductases. Pathway Specific Unbinding Free Energy Profiles of Ritonavir Dissociation from HIV-1 Protease. Conversion of Inactive Non-Pro1 Tautomerase Superfamily Members into Active Tautomerases: Analysis of the Pro1 Mutants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1