Himank Kumar, Oliver P Kuehm, Sarah A E Aboushawareb, Atieh Rafiei, Nicole M Easton, Stephen L Bearne
{"title":"活性位点Bro -嵌套的酸碱催化剂破坏了曼德尔酸外消旋酶和相关亚群酶的稳定性:对催化的影响。","authors":"Himank Kumar, Oliver P Kuehm, Sarah A E Aboushawareb, Atieh Rafiei, Nicole M Easton, Stephen L Bearne","doi":"10.1021/acs.biochem.4c00572","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymes of the enolase superfamily (ENS) are mechanistically diverse, yet share a common partial reaction, i.e., the metal-assisted, Bro̷nsted base-catalyzed abstraction of the α-proton from a carboxylate substrate to form an enol(ate) intermediate. Although the catalytic machinery responsible for the initial deprotonation reaction has been conserved, divergent evolution has led to numerous ENS members that catalyze different overall reactions. Using differential scanning calorimetry, we examined the contribution of the Bro̷nsted acid-base catalysts to the thermostability (<i>T</i><sub>m</sub>) of four members of the mandelate racemase (MR)-subgroup of the ENS: MR, d-tartrate dehydratase, l-talarate/galactarate dehydratase, and l-fuconate dehydratase. Each enzyme contains an active-site Lys (part of a Kx<u>K</u> motif) and His, which act as Bro̷nsted acid-base catalysts. The KxK → KxM substitutions increased the thermostability in all four enzymes with the effect being most prominent for MR (Δ<i>T</i><sub>m</sub> = +8.6 °C). The KxK → MxK substitutions decreased the thermostability in all four enzymes, and the His → Asn substitution had a significant stabilizing effect only on MR. Thus, the active sites of MR-subgroup enzymes are destabilized by the Lys Bro̷nsted acid-base catalyst, suggesting that the destabilization energy may be used to drive a conformational change of the enzyme to yield a catalytically competent protonation state upon substrate binding.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"666-677"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Active-Site Bro̷nsted Acid-Base Catalyst Destabilizes Mandelate Racemase and Related Subgroup Enzymes: Implications for Catalysis.\",\"authors\":\"Himank Kumar, Oliver P Kuehm, Sarah A E Aboushawareb, Atieh Rafiei, Nicole M Easton, Stephen L Bearne\",\"doi\":\"10.1021/acs.biochem.4c00572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enzymes of the enolase superfamily (ENS) are mechanistically diverse, yet share a common partial reaction, i.e., the metal-assisted, Bro̷nsted base-catalyzed abstraction of the α-proton from a carboxylate substrate to form an enol(ate) intermediate. Although the catalytic machinery responsible for the initial deprotonation reaction has been conserved, divergent evolution has led to numerous ENS members that catalyze different overall reactions. Using differential scanning calorimetry, we examined the contribution of the Bro̷nsted acid-base catalysts to the thermostability (<i>T</i><sub>m</sub>) of four members of the mandelate racemase (MR)-subgroup of the ENS: MR, d-tartrate dehydratase, l-talarate/galactarate dehydratase, and l-fuconate dehydratase. Each enzyme contains an active-site Lys (part of a Kx<u>K</u> motif) and His, which act as Bro̷nsted acid-base catalysts. The KxK → KxM substitutions increased the thermostability in all four enzymes with the effect being most prominent for MR (Δ<i>T</i><sub>m</sub> = +8.6 °C). The KxK → MxK substitutions decreased the thermostability in all four enzymes, and the His → Asn substitution had a significant stabilizing effect only on MR. Thus, the active sites of MR-subgroup enzymes are destabilized by the Lys Bro̷nsted acid-base catalyst, suggesting that the destabilization energy may be used to drive a conformational change of the enzyme to yield a catalytically competent protonation state upon substrate binding.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\" \",\"pages\":\"666-677\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00572\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00572","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
An Active-Site Bro̷nsted Acid-Base Catalyst Destabilizes Mandelate Racemase and Related Subgroup Enzymes: Implications for Catalysis.
Enzymes of the enolase superfamily (ENS) are mechanistically diverse, yet share a common partial reaction, i.e., the metal-assisted, Bro̷nsted base-catalyzed abstraction of the α-proton from a carboxylate substrate to form an enol(ate) intermediate. Although the catalytic machinery responsible for the initial deprotonation reaction has been conserved, divergent evolution has led to numerous ENS members that catalyze different overall reactions. Using differential scanning calorimetry, we examined the contribution of the Bro̷nsted acid-base catalysts to the thermostability (Tm) of four members of the mandelate racemase (MR)-subgroup of the ENS: MR, d-tartrate dehydratase, l-talarate/galactarate dehydratase, and l-fuconate dehydratase. Each enzyme contains an active-site Lys (part of a KxK motif) and His, which act as Bro̷nsted acid-base catalysts. The KxK → KxM substitutions increased the thermostability in all four enzymes with the effect being most prominent for MR (ΔTm = +8.6 °C). The KxK → MxK substitutions decreased the thermostability in all four enzymes, and the His → Asn substitution had a significant stabilizing effect only on MR. Thus, the active sites of MR-subgroup enzymes are destabilized by the Lys Bro̷nsted acid-base catalyst, suggesting that the destabilization energy may be used to drive a conformational change of the enzyme to yield a catalytically competent protonation state upon substrate binding.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.