{"title":"神经来源的细胞外基质促进骨髓基质细胞的神经分化并增强白细胞介素-4在晚期神经再生中的作用。","authors":"Huachen Yu, Pei Fan, Xinyue Deng, Miaolin Zeng, Liyun Ge, Enxing Xue, Daqing Chen, Man Zhang","doi":"10.1002/adhm.202402713","DOIUrl":null,"url":null,"abstract":"<p><p>Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment. It is observed that incorporating NDEM into the hydrogel system intrinsically promotes BMSC differentiation into neuron-like cells and effectively regulates IL-4 release kinetics to match the neural reconstructing timeframe. Further analysis reveals that trace amounts of endogenous basic fibroblast growth factor (bFGF) detected in NDEM exhibit a potent effect in promoting neural differentiation. The sustained release of IL-4 from the NDEM significantly encourages macrophage polarization toward the M2 phase, optimizing the transplant microenvironment throughout the reconstruction process. This study demonstrates an NDEM-based optimization strategy for hybrid hydrogel to achieve synchronized delivery of stem cells and cytokines in regenerative medicine applications.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402713"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nerve-Derived Extracellular Matrix Promotes Neural Differentiation of Bone Marrow Stromal Cells and Enhances Interleukin-4 Efficacy for Advanced Nerve Regeneration.\",\"authors\":\"Huachen Yu, Pei Fan, Xinyue Deng, Miaolin Zeng, Liyun Ge, Enxing Xue, Daqing Chen, Man Zhang\",\"doi\":\"10.1002/adhm.202402713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment. It is observed that incorporating NDEM into the hydrogel system intrinsically promotes BMSC differentiation into neuron-like cells and effectively regulates IL-4 release kinetics to match the neural reconstructing timeframe. Further analysis reveals that trace amounts of endogenous basic fibroblast growth factor (bFGF) detected in NDEM exhibit a potent effect in promoting neural differentiation. The sustained release of IL-4 from the NDEM significantly encourages macrophage polarization toward the M2 phase, optimizing the transplant microenvironment throughout the reconstruction process. This study demonstrates an NDEM-based optimization strategy for hybrid hydrogel to achieve synchronized delivery of stem cells and cytokines in regenerative medicine applications.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2402713\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202402713\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202402713","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Nerve-Derived Extracellular Matrix Promotes Neural Differentiation of Bone Marrow Stromal Cells and Enhances Interleukin-4 Efficacy for Advanced Nerve Regeneration.
Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment. It is observed that incorporating NDEM into the hydrogel system intrinsically promotes BMSC differentiation into neuron-like cells and effectively regulates IL-4 release kinetics to match the neural reconstructing timeframe. Further analysis reveals that trace amounts of endogenous basic fibroblast growth factor (bFGF) detected in NDEM exhibit a potent effect in promoting neural differentiation. The sustained release of IL-4 from the NDEM significantly encourages macrophage polarization toward the M2 phase, optimizing the transplant microenvironment throughout the reconstruction process. This study demonstrates an NDEM-based optimization strategy for hybrid hydrogel to achieve synchronized delivery of stem cells and cytokines in regenerative medicine applications.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.