活性刺梨果多糖对乳铁蛋白结构及乳化性能的影响。

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Macromolecules Pub Date : 2025-04-01 Epub Date: 2025-01-19 DOI:10.1016/j.ijbiomac.2025.140016
Wang Pingping, Du Yutong, Chai Xianghua, Chen Chun, Wu Kegang, Fu Xiong
{"title":"活性刺梨果多糖对乳铁蛋白结构及乳化性能的影响。","authors":"Wang Pingping, Du Yutong, Chai Xianghua, Chen Chun, Wu Kegang, Fu Xiong","doi":"10.1016/j.ijbiomac.2025.140016","DOIUrl":null,"url":null,"abstract":"<p><p>Lactoferrin protein (LF) is a natural protein with certain emulsifying ability, but is sensitive to be affected by environmental factors and has poor oxidative stability to be used as emulsifier. In this study, the emulsifying ability of LF was significantly improved after conjugation with Rosa roxburghii Tratt fruit polysaccharides (RTFP), and the emulsion stability mechanism of LF-RTFP conjugates (L-R) were elucidated through the utilization of CLSM (confocal laser scanning microscopy), interfacial tension, apparent viscosity, and protein adsorption rate. The emulsion stabilized by L-R showed the smaller particle size (17.17 ± 0.13 μm), which reduced by 51 % compared with that of LF. After conjugation with RTFP, the hydrophobic amino acids that are originally inside the structure of LF would be exposed on the protein surface. In addition, the protein adsorption rate of L-R stabilized emulsion interface was 62.70 ± 0.71 %, 2.4 times higher than that of LF. The optical microscopy and CLSM experiments indicated that the glycosylation with RTFP increased the bridged flocculation and further formed gel network structure in the emulsion stabilized by LF. These findings suggested that the novel emulsifier prepared by the Maillard reaction between LF and RTFP showed potential to stable emulsion.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140016"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of bioactive Rosa roxburghii Tratt fruit polysaccharide on the structure and emulsifying property of lactoferrin protein.\",\"authors\":\"Wang Pingping, Du Yutong, Chai Xianghua, Chen Chun, Wu Kegang, Fu Xiong\",\"doi\":\"10.1016/j.ijbiomac.2025.140016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lactoferrin protein (LF) is a natural protein with certain emulsifying ability, but is sensitive to be affected by environmental factors and has poor oxidative stability to be used as emulsifier. In this study, the emulsifying ability of LF was significantly improved after conjugation with Rosa roxburghii Tratt fruit polysaccharides (RTFP), and the emulsion stability mechanism of LF-RTFP conjugates (L-R) were elucidated through the utilization of CLSM (confocal laser scanning microscopy), interfacial tension, apparent viscosity, and protein adsorption rate. The emulsion stabilized by L-R showed the smaller particle size (17.17 ± 0.13 μm), which reduced by 51 % compared with that of LF. After conjugation with RTFP, the hydrophobic amino acids that are originally inside the structure of LF would be exposed on the protein surface. In addition, the protein adsorption rate of L-R stabilized emulsion interface was 62.70 ± 0.71 %, 2.4 times higher than that of LF. The optical microscopy and CLSM experiments indicated that the glycosylation with RTFP increased the bridged flocculation and further formed gel network structure in the emulsion stabilized by LF. These findings suggested that the novel emulsifier prepared by the Maillard reaction between LF and RTFP showed potential to stable emulsion.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"140016\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2025.140016\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

乳铁蛋白(LF)是一种具有一定乳化能力的天然蛋白,但对环境因素的影响比较敏感,氧化稳定性差,不能作为乳化剂。本研究利用共聚焦激光扫描显微镜(CLSM)、界面张力、表观粘度和蛋白质吸附率等指标,对LF-RTFP偶联物(L-R)的乳化稳定性机理进行了研究。L-R稳定乳状液的粒径较小(17.17 ± 0.13 μm),比LF稳定乳状液减小了51 %。与RTFP结合后,原存在于LF结构内部的疏水氨基酸暴露在蛋白表面。L-R稳定乳状液界面对蛋白质的吸附率为62.70 ± 0.71 %,是LF的2.4倍。光学显微镜和CLSM实验表明,RTFP的糖基化增加了桥式絮凝,进一步形成了LF稳定乳状液中的凝胶网络结构。这些结果表明,由LF和RTFP之间的美拉德反应制备的新型乳化剂具有稳定乳液的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of bioactive Rosa roxburghii Tratt fruit polysaccharide on the structure and emulsifying property of lactoferrin protein.

Lactoferrin protein (LF) is a natural protein with certain emulsifying ability, but is sensitive to be affected by environmental factors and has poor oxidative stability to be used as emulsifier. In this study, the emulsifying ability of LF was significantly improved after conjugation with Rosa roxburghii Tratt fruit polysaccharides (RTFP), and the emulsion stability mechanism of LF-RTFP conjugates (L-R) were elucidated through the utilization of CLSM (confocal laser scanning microscopy), interfacial tension, apparent viscosity, and protein adsorption rate. The emulsion stabilized by L-R showed the smaller particle size (17.17 ± 0.13 μm), which reduced by 51 % compared with that of LF. After conjugation with RTFP, the hydrophobic amino acids that are originally inside the structure of LF would be exposed on the protein surface. In addition, the protein adsorption rate of L-R stabilized emulsion interface was 62.70 ± 0.71 %, 2.4 times higher than that of LF. The optical microscopy and CLSM experiments indicated that the glycosylation with RTFP increased the bridged flocculation and further formed gel network structure in the emulsion stabilized by LF. These findings suggested that the novel emulsifier prepared by the Maillard reaction between LF and RTFP showed potential to stable emulsion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
期刊最新文献
Recent advances in valorization of lignocellulosic waste into biochar and its functionalization for the removal of chromium ions. CEBPA as a potential hub gene for cutaneous inflammation in type 2 diabetes mellitus. Construction of environmentally stable self-adhesive conductive cellulose hydrogel for electronic skin sensor via autocatalytic fast polymerization strategy at room temperature. Effect of bioactive Rosa roxburghii Tratt fruit polysaccharide on the structure and emulsifying property of lactoferrin protein. Targeting JAK/STAT3 in glioblastoma cells using an alginate-PNIPAm molecularly imprinted hydrogel for the sustained release of ruxolitinib.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1