{"title":"LC三周期最小表面固定相的分散特性:表面吸附的情况。","authors":"Carolina Lauriola , Claudia Venditti , Gert Desmet , Alessandra Adrover","doi":"10.1016/j.chroma.2025.465676","DOIUrl":null,"url":null,"abstract":"<div><div>The exact moment method for the determination of the dispersion tensor in retentive porous media has been adopted to compute the dispersion coefficients, the plate height curves and the kinetic performance factors of eight different 3D printable stationary phases based on triply periodic minimal surfaces (TPMS). The two cases in which the stationary phase is impermeable (hydrodynamic dispersion) or superficially retentive have been analyzed in detail. The Carman–Kozeny relationship between permeability <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span>, hydraulic diameter <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> and hydrodynamic tortuosity <span><math><mi>τ</mi></math></span> holds true for all the geometries investigated with a unique shape coefficient <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. The analysis of plate height curves indicates that best performing geometries are associated with lower values of the effective diameter <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>eff</mi></mrow></msub></math></span>, and thus lower values of permeability. When compared in terms of kinetic performance factor, the best performing geometries are those characterized by lower tortuosity and higher coefficient of uniformity <span><math><mi>δ</mi></math></span> of the axial velocity field. Among all the geometries investigated, sheet-based Gyroid and Primitive are the best performing, both in terms of maximum kinetic performance factor <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>c</mi><mo>,</mo><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>.</mo><mn>4</mn><mo>)</mo></mrow></mrow></math></span> and in terms of column void time <span><math><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>4</mn><mi>s</mi><mo>,</mo><mn>1</mn><mo>.</mo><mn>6</mn><mi>s</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>Δ</mi><mi>P</mi><mo>=</mo><mn>500</mn></mrow></math></span> bar.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1743 ","pages":"Article 465676"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersion properties of triply periodic minimal surface stationary phases for LC: The case of superficial adsorption\",\"authors\":\"Carolina Lauriola , Claudia Venditti , Gert Desmet , Alessandra Adrover\",\"doi\":\"10.1016/j.chroma.2025.465676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The exact moment method for the determination of the dispersion tensor in retentive porous media has been adopted to compute the dispersion coefficients, the plate height curves and the kinetic performance factors of eight different 3D printable stationary phases based on triply periodic minimal surfaces (TPMS). The two cases in which the stationary phase is impermeable (hydrodynamic dispersion) or superficially retentive have been analyzed in detail. The Carman–Kozeny relationship between permeability <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span>, hydraulic diameter <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> and hydrodynamic tortuosity <span><math><mi>τ</mi></math></span> holds true for all the geometries investigated with a unique shape coefficient <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. The analysis of plate height curves indicates that best performing geometries are associated with lower values of the effective diameter <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>eff</mi></mrow></msub></math></span>, and thus lower values of permeability. When compared in terms of kinetic performance factor, the best performing geometries are those characterized by lower tortuosity and higher coefficient of uniformity <span><math><mi>δ</mi></math></span> of the axial velocity field. Among all the geometries investigated, sheet-based Gyroid and Primitive are the best performing, both in terms of maximum kinetic performance factor <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mi>c</mi><mo>,</mo><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>.</mo><mn>4</mn><mo>)</mo></mrow></mrow></math></span> and in terms of column void time <span><math><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>.</mo><mn>4</mn><mi>s</mi><mo>,</mo><mn>1</mn><mo>.</mo><mn>6</mn><mi>s</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>Δ</mi><mi>P</mi><mo>=</mo><mn>500</mn></mrow></math></span> bar.</div></div>\",\"PeriodicalId\":347,\"journal\":{\"name\":\"Journal of Chromatography A\",\"volume\":\"1743 \",\"pages\":\"Article 465676\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021967325000251\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967325000251","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Dispersion properties of triply periodic minimal surface stationary phases for LC: The case of superficial adsorption
The exact moment method for the determination of the dispersion tensor in retentive porous media has been adopted to compute the dispersion coefficients, the plate height curves and the kinetic performance factors of eight different 3D printable stationary phases based on triply periodic minimal surfaces (TPMS). The two cases in which the stationary phase is impermeable (hydrodynamic dispersion) or superficially retentive have been analyzed in detail. The Carman–Kozeny relationship between permeability , hydraulic diameter and hydrodynamic tortuosity holds true for all the geometries investigated with a unique shape coefficient . The analysis of plate height curves indicates that best performing geometries are associated with lower values of the effective diameter , and thus lower values of permeability. When compared in terms of kinetic performance factor, the best performing geometries are those characterized by lower tortuosity and higher coefficient of uniformity of the axial velocity field. Among all the geometries investigated, sheet-based Gyroid and Primitive are the best performing, both in terms of maximum kinetic performance factor and in terms of column void time for bar.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.