复杂河流系统鱼类洄游模拟与生境评价。

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Management Pub Date : 2025-02-01 Epub Date: 2025-01-16 DOI:10.1016/j.jenvman.2025.124146
Shikang Liu, Nan Wang, Carlo Gualtieri, Chendi Zhang, Chenyang Cao, Junguang Chen, Xuefeng Chen, William Bol Yaak, Weiwei Yao
{"title":"复杂河流系统鱼类洄游模拟与生境评价。","authors":"Shikang Liu, Nan Wang, Carlo Gualtieri, Chendi Zhang, Chenyang Cao, Junguang Chen, Xuefeng Chen, William Bol Yaak, Weiwei Yao","doi":"10.1016/j.jenvman.2025.124146","DOIUrl":null,"url":null,"abstract":"<p><p>Fish migration patterns are driven by hydrodynamic factors, which are essential in aquatic ecology. This study investigated the hydrodynamic drivers of Gymnocypris przewalskii fish migration in two distinct river reaches-a straight reach (SR) and a confluence reach (CR)- in the area of Qinghai Lake, China, using a 3D numerical model, fish density field data, and four predictive models. Thirteen hydrodynamic factors, with a focus on water depth and velocity, were analyzed to identify their influence on fish migration. It was found that in the SR, linear factors of flow velocity and turbulent kinetic energy were most influential, while in the CR, nonlinear factors of water temperature and vortex intensity dominated. For CR, fish migration patterns are also important nonlinear factors. Methods that accurately reveal fish migration patterns, such as Random Forest, offer higher precision for habitat assessment. Our research also shows that fish swimming ability can, to some extent, reflect migration direction. Combining fish swimming ability with traditional linear habitat assessment methods can improve the adaptability of these methods in complex fluvial system. Based on our research findings, we propose a new workflow for fish habitat assessment that integrates both linear and nonlinear predictive methods. This framework provides valuable insights for enhancing fish conservation strategies in various fluvial systems.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"374 ","pages":"124146"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fish migration modeling and habitat assessment in a complex fluvial system.\",\"authors\":\"Shikang Liu, Nan Wang, Carlo Gualtieri, Chendi Zhang, Chenyang Cao, Junguang Chen, Xuefeng Chen, William Bol Yaak, Weiwei Yao\",\"doi\":\"10.1016/j.jenvman.2025.124146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fish migration patterns are driven by hydrodynamic factors, which are essential in aquatic ecology. This study investigated the hydrodynamic drivers of Gymnocypris przewalskii fish migration in two distinct river reaches-a straight reach (SR) and a confluence reach (CR)- in the area of Qinghai Lake, China, using a 3D numerical model, fish density field data, and four predictive models. Thirteen hydrodynamic factors, with a focus on water depth and velocity, were analyzed to identify their influence on fish migration. It was found that in the SR, linear factors of flow velocity and turbulent kinetic energy were most influential, while in the CR, nonlinear factors of water temperature and vortex intensity dominated. For CR, fish migration patterns are also important nonlinear factors. Methods that accurately reveal fish migration patterns, such as Random Forest, offer higher precision for habitat assessment. Our research also shows that fish swimming ability can, to some extent, reflect migration direction. Combining fish swimming ability with traditional linear habitat assessment methods can improve the adaptability of these methods in complex fluvial system. Based on our research findings, we propose a new workflow for fish habitat assessment that integrates both linear and nonlinear predictive methods. This framework provides valuable insights for enhancing fish conservation strategies in various fluvial systems.</p>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"374 \",\"pages\":\"124146\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jenvman.2025.124146\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.124146","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

鱼类的洄游模式是由水动力因素驱动的,这在水生生态学中是必不可少的。利用三维数值模型、鱼类密度场数据和4种预测模型,研究了青海湖直流河段和汇流河段裸鱼洄游的水动力驱动因素。以水深和流速为重点,分析了13个水动力因素对鱼类洄游的影响。研究发现,在SR中,流速和湍流动能的线性因子影响最大,而在CR中,水温和涡强度的非线性因子占主导地位。对于CR,鱼类洄游模式也是重要的非线性因素。随机森林(Random Forest)等准确揭示鱼类洄游模式的方法为生境评估提供了更高的精度。我们的研究也表明,鱼类的游动能力在一定程度上反映了洄游方向。将鱼类游动能力与传统的线性生境评价方法相结合,可以提高这些方法在复杂河流系统中的适应性。在此基础上,提出了一种结合线性和非线性预测方法的鱼类栖息地评估新流程。该框架为加强各种河流系统的鱼类保护策略提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fish migration modeling and habitat assessment in a complex fluvial system.

Fish migration patterns are driven by hydrodynamic factors, which are essential in aquatic ecology. This study investigated the hydrodynamic drivers of Gymnocypris przewalskii fish migration in two distinct river reaches-a straight reach (SR) and a confluence reach (CR)- in the area of Qinghai Lake, China, using a 3D numerical model, fish density field data, and four predictive models. Thirteen hydrodynamic factors, with a focus on water depth and velocity, were analyzed to identify their influence on fish migration. It was found that in the SR, linear factors of flow velocity and turbulent kinetic energy were most influential, while in the CR, nonlinear factors of water temperature and vortex intensity dominated. For CR, fish migration patterns are also important nonlinear factors. Methods that accurately reveal fish migration patterns, such as Random Forest, offer higher precision for habitat assessment. Our research also shows that fish swimming ability can, to some extent, reflect migration direction. Combining fish swimming ability with traditional linear habitat assessment methods can improve the adaptability of these methods in complex fluvial system. Based on our research findings, we propose a new workflow for fish habitat assessment that integrates both linear and nonlinear predictive methods. This framework provides valuable insights for enhancing fish conservation strategies in various fluvial systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
期刊最新文献
Spatiotemporal evolution and driving forces of landscape structure and habitat quality in river corridors with ceased flow: A case study of the Yongding River corridor in Beijing, China. Sulfadiazine removal with low-cost structured nano and micro-composite hydrogel beads on moroccan clays with alginate-CMC-biochar. The impacts of alien species on river bioassessment. Understanding the impacts of ecological compensation policy on rural livelihoods: Insights from forest communities of China. Unveiling the effect of social networks on farmers' diversified energy-saving behaviors in the Tibetan plateau region of China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1