上肢畸形截骨手术数字化规划与实施的新方法综述。

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL BioMedical Engineering OnLine Pub Date : 2025-01-15 DOI:10.1186/s12938-025-01332-5
Yoshii Yuichi, Sho Kohyama, Akira Ikumi, Yohei Yanagisawa, Takushi Nakatani, Junichiro Morita, Takeshi Ogawa
{"title":"上肢畸形截骨手术数字化规划与实施的新方法综述。","authors":"Yoshii Yuichi, Sho Kohyama, Akira Ikumi, Yohei Yanagisawa, Takushi Nakatani, Junichiro Morita, Takeshi Ogawa","doi":"10.1186/s12938-025-01332-5","DOIUrl":null,"url":null,"abstract":"<p><p>Corrective osteotomy for upper limb deformities caused by fractures, trauma, or degeneration necessitates detailed preoperative planning to ensure accurate anatomical alignment, restore limb length, and correct angular deformities. This review evaluates the effectiveness of a three-dimensional (3D) preoperative planning program and an image fusion system designed for intraoperative guidance during corrective osteotomy procedures. The application processes and clinical outcomes observed with these technologies in various surgical scenarios involving the upper extremities were summarized. The systems proved beneficial in allowing surgeons to visualize surgical steps and optimize implant placement. However, despite these technological advancements, we found no significant impact on clinical outcomes compared to conventional methods. This indicates a need for further enhancements in system efficiency and user-friendliness to significantly improve patient results. Future developments should focus on addressing these limitations to enhance the practical utility of such advanced systems.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"2"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736953/pdf/","citationCount":"0","resultStr":"{\"title\":\"A review of novel methods to assist digital planning and execution of osteotomy for upper limb deformities.\",\"authors\":\"Yoshii Yuichi, Sho Kohyama, Akira Ikumi, Yohei Yanagisawa, Takushi Nakatani, Junichiro Morita, Takeshi Ogawa\",\"doi\":\"10.1186/s12938-025-01332-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Corrective osteotomy for upper limb deformities caused by fractures, trauma, or degeneration necessitates detailed preoperative planning to ensure accurate anatomical alignment, restore limb length, and correct angular deformities. This review evaluates the effectiveness of a three-dimensional (3D) preoperative planning program and an image fusion system designed for intraoperative guidance during corrective osteotomy procedures. The application processes and clinical outcomes observed with these technologies in various surgical scenarios involving the upper extremities were summarized. The systems proved beneficial in allowing surgeons to visualize surgical steps and optimize implant placement. However, despite these technological advancements, we found no significant impact on clinical outcomes compared to conventional methods. This indicates a need for further enhancements in system efficiency and user-friendliness to significantly improve patient results. Future developments should focus on addressing these limitations to enhance the practical utility of such advanced systems.</p>\",\"PeriodicalId\":8927,\"journal\":{\"name\":\"BioMedical Engineering OnLine\",\"volume\":\"24 1\",\"pages\":\"2\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736953/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedical Engineering OnLine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12938-025-01332-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01332-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于骨折、创伤或退行性变引起的上肢畸形需要详细的术前计划,以确保准确的解剖对齐,恢复肢体长度,纠正角度畸形。本综述评估了三维(3D)术前计划程序和图像融合系统在矫正截骨术中用于术中指导的有效性。总结了这些技术在不同上肢手术场景中的应用过程和临床效果。该系统被证明在允许外科医生可视化手术步骤和优化植入物放置方面是有益的。然而,尽管这些技术进步,我们发现与传统方法相比,对临床结果没有显著影响。这表明需要进一步提高系统效率和用户友好性,以显着改善患者结果。未来的发展应侧重于解决这些限制,以提高这种先进系统的实际效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of novel methods to assist digital planning and execution of osteotomy for upper limb deformities.

Corrective osteotomy for upper limb deformities caused by fractures, trauma, or degeneration necessitates detailed preoperative planning to ensure accurate anatomical alignment, restore limb length, and correct angular deformities. This review evaluates the effectiveness of a three-dimensional (3D) preoperative planning program and an image fusion system designed for intraoperative guidance during corrective osteotomy procedures. The application processes and clinical outcomes observed with these technologies in various surgical scenarios involving the upper extremities were summarized. The systems proved beneficial in allowing surgeons to visualize surgical steps and optimize implant placement. However, despite these technological advancements, we found no significant impact on clinical outcomes compared to conventional methods. This indicates a need for further enhancements in system efficiency and user-friendliness to significantly improve patient results. Future developments should focus on addressing these limitations to enhance the practical utility of such advanced systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
期刊最新文献
A novel corneal indentation device for comparison of corneal tangent modulus before and after FS-LASIK in vivo. Design and validation of an alignment free adaptive joint torque measurement system. Feasibility and reliability of an online version of the beat alignment test in neurotypical adults and people with stroke. Deep learning and electrocardiography: systematic review of current techniques in cardiovascular disease diagnosis and management. Cross-evaluation of wearable data for use in Parkinson's disease research: a free-living observational study on Empatica E4, Fitbit Sense, and Oura.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1