{"title":"CRISPR敲入GAPDH 3'UTR位点的嵌合抗原受体产生有效的b7h3特异性NK-92MI细胞。","authors":"Liujiang Dai, Pengchao Zhang, Xiangyun Niu, Xixia Peng, Rabiatu Bako Suleiman, Guizhong Zhang, Xiaochun Wan","doi":"10.1038/s41417-025-00872-1","DOIUrl":null,"url":null,"abstract":"CAR-NK therapy is becoming a promising approach to treat solid tumors. However, the random insertion of the CAR gene and inflexible CAR expression caused by common preparation methods significantly impact its efficacy and safety. Here we successfully established a novel type of CAR-NK cells by integrating CAR sequences into the GAPDH 3’UTR locus of NK-92MI cells (CRISPR-CAR-NK), achieving site-specific integration of the CAR gene and allowing endogenous regulatory components to govern CAR expression. CRISPR-CAR-NK cells had comparable growth capacity but displayed superior anti-tumor activity compared with their lentiviral counterparts. They activated and degranulated more effectively when co-cultured with tumor cells, due to increased expression of activating receptors and decreased expression of inhibitory molecules. They also enhanced the production of Granzyme B and IFN-γ, and more effectively triggered the IFN-γ pathway. Moreover, CRISPR-CAR-NK cells demonstrated distinct properties from conventional CAR-NK concerning metabolic features and signal dependence. Notably, CRISPR-CAR-NK cells exhibited lower metabolic levels without compromising antitumor activity, and their function was less reliant on the PI3K-AKT pathway, implying that the CRISPR-CAR-NK cells have significant potential for enhanced synergy with AKT inhibitors and adaptation to nutrient stress within the tumor microenvironment. These findings provide a novel potential strategy for cancer immunotherapy and an experimental foundation and paradigm for optimizing CAR-NK cells utilizing CRISPR technology, highlighting the potential of CRISPR to advance immunotherapies.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 2","pages":"227-239"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-025-00872-1.pdf","citationCount":"0","resultStr":"{\"title\":\"CRISPR knock-in of a chimeric antigen receptor into GAPDH 3’UTR locus generates potent B7H3-specific NK-92MI cells\",\"authors\":\"Liujiang Dai, Pengchao Zhang, Xiangyun Niu, Xixia Peng, Rabiatu Bako Suleiman, Guizhong Zhang, Xiaochun Wan\",\"doi\":\"10.1038/s41417-025-00872-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CAR-NK therapy is becoming a promising approach to treat solid tumors. However, the random insertion of the CAR gene and inflexible CAR expression caused by common preparation methods significantly impact its efficacy and safety. Here we successfully established a novel type of CAR-NK cells by integrating CAR sequences into the GAPDH 3’UTR locus of NK-92MI cells (CRISPR-CAR-NK), achieving site-specific integration of the CAR gene and allowing endogenous regulatory components to govern CAR expression. CRISPR-CAR-NK cells had comparable growth capacity but displayed superior anti-tumor activity compared with their lentiviral counterparts. They activated and degranulated more effectively when co-cultured with tumor cells, due to increased expression of activating receptors and decreased expression of inhibitory molecules. They also enhanced the production of Granzyme B and IFN-γ, and more effectively triggered the IFN-γ pathway. Moreover, CRISPR-CAR-NK cells demonstrated distinct properties from conventional CAR-NK concerning metabolic features and signal dependence. Notably, CRISPR-CAR-NK cells exhibited lower metabolic levels without compromising antitumor activity, and their function was less reliant on the PI3K-AKT pathway, implying that the CRISPR-CAR-NK cells have significant potential for enhanced synergy with AKT inhibitors and adaptation to nutrient stress within the tumor microenvironment. These findings provide a novel potential strategy for cancer immunotherapy and an experimental foundation and paradigm for optimizing CAR-NK cells utilizing CRISPR technology, highlighting the potential of CRISPR to advance immunotherapies.\",\"PeriodicalId\":9577,\"journal\":{\"name\":\"Cancer gene therapy\",\"volume\":\"32 2\",\"pages\":\"227-239\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41417-025-00872-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41417-025-00872-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41417-025-00872-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
CRISPR knock-in of a chimeric antigen receptor into GAPDH 3’UTR locus generates potent B7H3-specific NK-92MI cells
CAR-NK therapy is becoming a promising approach to treat solid tumors. However, the random insertion of the CAR gene and inflexible CAR expression caused by common preparation methods significantly impact its efficacy and safety. Here we successfully established a novel type of CAR-NK cells by integrating CAR sequences into the GAPDH 3’UTR locus of NK-92MI cells (CRISPR-CAR-NK), achieving site-specific integration of the CAR gene and allowing endogenous regulatory components to govern CAR expression. CRISPR-CAR-NK cells had comparable growth capacity but displayed superior anti-tumor activity compared with their lentiviral counterparts. They activated and degranulated more effectively when co-cultured with tumor cells, due to increased expression of activating receptors and decreased expression of inhibitory molecules. They also enhanced the production of Granzyme B and IFN-γ, and more effectively triggered the IFN-γ pathway. Moreover, CRISPR-CAR-NK cells demonstrated distinct properties from conventional CAR-NK concerning metabolic features and signal dependence. Notably, CRISPR-CAR-NK cells exhibited lower metabolic levels without compromising antitumor activity, and their function was less reliant on the PI3K-AKT pathway, implying that the CRISPR-CAR-NK cells have significant potential for enhanced synergy with AKT inhibitors and adaptation to nutrient stress within the tumor microenvironment. These findings provide a novel potential strategy for cancer immunotherapy and an experimental foundation and paradigm for optimizing CAR-NK cells utilizing CRISPR technology, highlighting the potential of CRISPR to advance immunotherapies.
期刊介绍:
Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair.
Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.