CRISPR敲入GAPDH 3'UTR位点的嵌合抗原受体产生有效的b7h3特异性NK-92MI细胞。

IF 4.8 3区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cancer gene therapy Pub Date : 2025-01-20 DOI:10.1038/s41417-025-00872-1
Liujiang Dai, Pengchao Zhang, Xiangyun Niu, Xixia Peng, Rabiatu Bako Suleiman, Guizhong Zhang, Xiaochun Wan
{"title":"CRISPR敲入GAPDH 3'UTR位点的嵌合抗原受体产生有效的b7h3特异性NK-92MI细胞。","authors":"Liujiang Dai, Pengchao Zhang, Xiangyun Niu, Xixia Peng, Rabiatu Bako Suleiman, Guizhong Zhang, Xiaochun Wan","doi":"10.1038/s41417-025-00872-1","DOIUrl":null,"url":null,"abstract":"CAR-NK therapy is becoming a promising approach to treat solid tumors. However, the random insertion of the CAR gene and inflexible CAR expression caused by common preparation methods significantly impact its efficacy and safety. Here we successfully established a novel type of CAR-NK cells by integrating CAR sequences into the GAPDH 3’UTR locus of NK-92MI cells (CRISPR-CAR-NK), achieving site-specific integration of the CAR gene and allowing endogenous regulatory components to govern CAR expression. CRISPR-CAR-NK cells had comparable growth capacity but displayed superior anti-tumor activity compared with their lentiviral counterparts. They activated and degranulated more effectively when co-cultured with tumor cells, due to increased expression of activating receptors and decreased expression of inhibitory molecules. They also enhanced the production of Granzyme B and IFN-γ, and more effectively triggered the IFN-γ pathway. Moreover, CRISPR-CAR-NK cells demonstrated distinct properties from conventional CAR-NK concerning metabolic features and signal dependence. Notably, CRISPR-CAR-NK cells exhibited lower metabolic levels without compromising antitumor activity, and their function was less reliant on the PI3K-AKT pathway, implying that the CRISPR-CAR-NK cells have significant potential for enhanced synergy with AKT inhibitors and adaptation to nutrient stress within the tumor microenvironment. These findings provide a novel potential strategy for cancer immunotherapy and an experimental foundation and paradigm for optimizing CAR-NK cells utilizing CRISPR technology, highlighting the potential of CRISPR to advance immunotherapies.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 2","pages":"227-239"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-025-00872-1.pdf","citationCount":"0","resultStr":"{\"title\":\"CRISPR knock-in of a chimeric antigen receptor into GAPDH 3’UTR locus generates potent B7H3-specific NK-92MI cells\",\"authors\":\"Liujiang Dai, Pengchao Zhang, Xiangyun Niu, Xixia Peng, Rabiatu Bako Suleiman, Guizhong Zhang, Xiaochun Wan\",\"doi\":\"10.1038/s41417-025-00872-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CAR-NK therapy is becoming a promising approach to treat solid tumors. However, the random insertion of the CAR gene and inflexible CAR expression caused by common preparation methods significantly impact its efficacy and safety. Here we successfully established a novel type of CAR-NK cells by integrating CAR sequences into the GAPDH 3’UTR locus of NK-92MI cells (CRISPR-CAR-NK), achieving site-specific integration of the CAR gene and allowing endogenous regulatory components to govern CAR expression. CRISPR-CAR-NK cells had comparable growth capacity but displayed superior anti-tumor activity compared with their lentiviral counterparts. They activated and degranulated more effectively when co-cultured with tumor cells, due to increased expression of activating receptors and decreased expression of inhibitory molecules. They also enhanced the production of Granzyme B and IFN-γ, and more effectively triggered the IFN-γ pathway. Moreover, CRISPR-CAR-NK cells demonstrated distinct properties from conventional CAR-NK concerning metabolic features and signal dependence. Notably, CRISPR-CAR-NK cells exhibited lower metabolic levels without compromising antitumor activity, and their function was less reliant on the PI3K-AKT pathway, implying that the CRISPR-CAR-NK cells have significant potential for enhanced synergy with AKT inhibitors and adaptation to nutrient stress within the tumor microenvironment. These findings provide a novel potential strategy for cancer immunotherapy and an experimental foundation and paradigm for optimizing CAR-NK cells utilizing CRISPR technology, highlighting the potential of CRISPR to advance immunotherapies.\",\"PeriodicalId\":9577,\"journal\":{\"name\":\"Cancer gene therapy\",\"volume\":\"32 2\",\"pages\":\"227-239\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41417-025-00872-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41417-025-00872-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41417-025-00872-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

CAR-NK疗法正在成为一种很有前景的治疗实体肿瘤的方法。然而,常见的制备方法导致CAR基因的随机插入和CAR表达的不灵活,严重影响了其疗效和安全性。本研究通过将CAR序列整合到NK-92MI细胞的GAPDH 3'UTR位点(CRISPR-CAR-NK),成功构建了一种新型CAR- nk细胞,实现了CAR基因的位点特异性整合,并允许内源性调节成分控制CAR的表达。与慢病毒细胞相比,CRISPR-CAR-NK细胞具有相当的生长能力,但表现出更强的抗肿瘤活性。当它们与肿瘤细胞共培养时,由于激活受体的表达增加而抑制分子的表达减少,它们更有效地激活和脱颗粒。它们还增强了颗粒酶B和IFN-γ的产生,并更有效地触发了IFN-γ途径。此外,CRISPR-CAR-NK细胞在代谢特征和信号依赖性方面表现出与传统CAR-NK细胞不同的特性。值得注意的是,CRISPR-CAR-NK细胞表现出较低的代谢水平,但不影响抗肿瘤活性,其功能对PI3K-AKT通路的依赖程度较低,这意味着CRISPR-CAR-NK细胞具有显著的潜力,可以增强与AKT抑制剂的协同作用,并适应肿瘤微环境中的营养应激。这些发现为癌症免疫治疗提供了一种新的潜在策略,并为利用CRISPR技术优化CAR-NK细胞提供了实验基础和范例,突出了CRISPR在推进免疫治疗方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRISPR knock-in of a chimeric antigen receptor into GAPDH 3’UTR locus generates potent B7H3-specific NK-92MI cells
CAR-NK therapy is becoming a promising approach to treat solid tumors. However, the random insertion of the CAR gene and inflexible CAR expression caused by common preparation methods significantly impact its efficacy and safety. Here we successfully established a novel type of CAR-NK cells by integrating CAR sequences into the GAPDH 3’UTR locus of NK-92MI cells (CRISPR-CAR-NK), achieving site-specific integration of the CAR gene and allowing endogenous regulatory components to govern CAR expression. CRISPR-CAR-NK cells had comparable growth capacity but displayed superior anti-tumor activity compared with their lentiviral counterparts. They activated and degranulated more effectively when co-cultured with tumor cells, due to increased expression of activating receptors and decreased expression of inhibitory molecules. They also enhanced the production of Granzyme B and IFN-γ, and more effectively triggered the IFN-γ pathway. Moreover, CRISPR-CAR-NK cells demonstrated distinct properties from conventional CAR-NK concerning metabolic features and signal dependence. Notably, CRISPR-CAR-NK cells exhibited lower metabolic levels without compromising antitumor activity, and their function was less reliant on the PI3K-AKT pathway, implying that the CRISPR-CAR-NK cells have significant potential for enhanced synergy with AKT inhibitors and adaptation to nutrient stress within the tumor microenvironment. These findings provide a novel potential strategy for cancer immunotherapy and an experimental foundation and paradigm for optimizing CAR-NK cells utilizing CRISPR technology, highlighting the potential of CRISPR to advance immunotherapies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer gene therapy
Cancer gene therapy 医学-生物工程与应用微生物
CiteScore
10.20
自引率
0.00%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair. Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.
期刊最新文献
Ferroptosis enhances the therapeutic potential of oncolytic adenoviruses KD01 against cancer. Therapeutic targeting of the tryptophan-kynurenine-aryl hydrocarbon receptor pathway with apigenin in MED12-mutant leiomyoma cells. A conditionally replicative adenovirus vector containing the synNotch receptor gene for the treatment of muscle-invasive bladder cancer. The role of tumor-derived exosomal LncRNA in tumor metastasis. FXYD5 regulates gastric cancer cell metastasis and drug resistance by EMT modulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1