以MAF1为中心的反馈回路减少败血症相关脑病的血脑屏障损伤。

IF 9.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cellular & Molecular Biology Letters Pub Date : 2025-01-20 DOI:10.1186/s11658-025-00686-x
Xuebiao Wei, Wenqiang Jiang, Zhonghua Wang, Yichen Li, Yuanwen Jing, Yongli Han, Linqiang Huang, Shenglong Chen
{"title":"以MAF1为中心的反馈回路减少败血症相关脑病的血脑屏障损伤。","authors":"Xuebiao Wei, Wenqiang Jiang, Zhonghua Wang, Yichen Li, Yuanwen Jing, Yongli Han, Linqiang Huang, Shenglong Chen","doi":"10.1186/s11658-025-00686-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A previous study found that MAF1 homolog, a negative regulator of RNA polymerase III (MAF1), protects the blood-brain barrier (BBB) in sepsis-associated encephalopathy (SAE); however, the related molecular mechanisms remain unclear.</p><p><strong>Subjects and methods: </strong>In this study, a rat sepsis model was constructed using the cecum ligation and puncture (CLP) method. In vitro, rat brain microvascular endothelial cells and astrocytes were stimulated with serum from the sepsis model rats. The loss of MAF1 protein levels and the molecular mechanisms leading to cell damage were investigated.</p><p><strong>Results: </strong>It was shown in the SAE models that MAF1 was expressed at low levels. Knockdown of Cullin 2 (CUL2) stimulated the accumulation of MAF1 protein, attenuated the RNA sensor RIG-I/interferon regulatory factor 3 (IRF3) signaling pathway, and reduced cell apoptosis. Furthermore, it increased phosphatase and tensin homolog (PTEN) expression and inactivated the serine/threonine kinase (AKT)/mechanistic target of the rapamycin kinase (mTOR) signaling pathway. Interference with forkhead box O1 (FOXO1) inhibited MAF1 expression and activated the RIG-I/IRF3 signaling pathway, while MAF1 overexpression promoted PTEN expression, decreased cell apoptosis, and normalized autophagy.</p><p><strong>Conclusions: </strong>These findings demonstrate that CUL2 promoted MAF1 ubiquitination and caused BBB injury in SAE. Through the regulatory loop of PTEN/AKT/FOXO1/MAF1, CUL2 initiated the gradual downregulation of MAF1, which subsequently regulated polymerase III (Pol III)-dependent transcription and played essential roles in cell apoptosis in SAE.</p><p><strong>Clinical trial number: </strong>not applicable.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"30 1","pages":"8"},"PeriodicalIF":9.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744841/pdf/","citationCount":"0","resultStr":"{\"title\":\"Feedback loop centered on MAF1 reduces blood-brain barrier damage in sepsis-associated encephalopathy.\",\"authors\":\"Xuebiao Wei, Wenqiang Jiang, Zhonghua Wang, Yichen Li, Yuanwen Jing, Yongli Han, Linqiang Huang, Shenglong Chen\",\"doi\":\"10.1186/s11658-025-00686-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>A previous study found that MAF1 homolog, a negative regulator of RNA polymerase III (MAF1), protects the blood-brain barrier (BBB) in sepsis-associated encephalopathy (SAE); however, the related molecular mechanisms remain unclear.</p><p><strong>Subjects and methods: </strong>In this study, a rat sepsis model was constructed using the cecum ligation and puncture (CLP) method. In vitro, rat brain microvascular endothelial cells and astrocytes were stimulated with serum from the sepsis model rats. The loss of MAF1 protein levels and the molecular mechanisms leading to cell damage were investigated.</p><p><strong>Results: </strong>It was shown in the SAE models that MAF1 was expressed at low levels. Knockdown of Cullin 2 (CUL2) stimulated the accumulation of MAF1 protein, attenuated the RNA sensor RIG-I/interferon regulatory factor 3 (IRF3) signaling pathway, and reduced cell apoptosis. Furthermore, it increased phosphatase and tensin homolog (PTEN) expression and inactivated the serine/threonine kinase (AKT)/mechanistic target of the rapamycin kinase (mTOR) signaling pathway. Interference with forkhead box O1 (FOXO1) inhibited MAF1 expression and activated the RIG-I/IRF3 signaling pathway, while MAF1 overexpression promoted PTEN expression, decreased cell apoptosis, and normalized autophagy.</p><p><strong>Conclusions: </strong>These findings demonstrate that CUL2 promoted MAF1 ubiquitination and caused BBB injury in SAE. Through the regulatory loop of PTEN/AKT/FOXO1/MAF1, CUL2 initiated the gradual downregulation of MAF1, which subsequently regulated polymerase III (Pol III)-dependent transcription and played essential roles in cell apoptosis in SAE.</p><p><strong>Clinical trial number: </strong>not applicable.</p>\",\"PeriodicalId\":9688,\"journal\":{\"name\":\"Cellular & Molecular Biology Letters\",\"volume\":\"30 1\",\"pages\":\"8\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744841/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular & Molecular Biology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s11658-025-00686-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular & Molecular Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s11658-025-00686-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:先前的一项研究发现,RNA聚合酶III (MAF1)的负调节因子MAF1同源物在脓毒症相关脑病(SAE)中保护血脑屏障(BBB);然而,相关的分子机制尚不清楚。对象和方法:本研究采用盲肠结扎穿刺法(CLP)建立大鼠脓毒症模型。体外用脓毒症模型大鼠血清刺激大鼠脑微血管内皮细胞和星形胶质细胞。研究了MAF1蛋白水平的丧失及其导致细胞损伤的分子机制。结果:SAE模型显示MAF1表达水平较低。Cullin 2 (CUL2)的敲低刺激了MAF1蛋白的积累,减弱了RNA传感器RIG-I/干扰素调节因子3 (IRF3)信号通路,减少了细胞凋亡。此外,它增加了磷酸酶和紧张素同源物(PTEN)的表达,并使丝氨酸/苏氨酸激酶(AKT)/雷帕霉素激酶(mTOR)信号通路的机制靶点失活。干扰叉头盒O1 (FOXO1)抑制MAF1表达,激活RIG-I/IRF3信号通路,而MAF1过表达促进PTEN表达,减少细胞凋亡,使细胞自噬正常化。结论:这些结果表明CUL2促进了mafr1泛素化并导致SAE血脑屏障损伤。CUL2通过PTEN/AKT/FOXO1/MAF1的调控环,启动MAF1的逐渐下调,进而调控聚合酶III (polymerase III, Pol III)依赖的转录,在SAE细胞凋亡中发挥重要作用。临床试验号:不适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feedback loop centered on MAF1 reduces blood-brain barrier damage in sepsis-associated encephalopathy.

Background: A previous study found that MAF1 homolog, a negative regulator of RNA polymerase III (MAF1), protects the blood-brain barrier (BBB) in sepsis-associated encephalopathy (SAE); however, the related molecular mechanisms remain unclear.

Subjects and methods: In this study, a rat sepsis model was constructed using the cecum ligation and puncture (CLP) method. In vitro, rat brain microvascular endothelial cells and astrocytes were stimulated with serum from the sepsis model rats. The loss of MAF1 protein levels and the molecular mechanisms leading to cell damage were investigated.

Results: It was shown in the SAE models that MAF1 was expressed at low levels. Knockdown of Cullin 2 (CUL2) stimulated the accumulation of MAF1 protein, attenuated the RNA sensor RIG-I/interferon regulatory factor 3 (IRF3) signaling pathway, and reduced cell apoptosis. Furthermore, it increased phosphatase and tensin homolog (PTEN) expression and inactivated the serine/threonine kinase (AKT)/mechanistic target of the rapamycin kinase (mTOR) signaling pathway. Interference with forkhead box O1 (FOXO1) inhibited MAF1 expression and activated the RIG-I/IRF3 signaling pathway, while MAF1 overexpression promoted PTEN expression, decreased cell apoptosis, and normalized autophagy.

Conclusions: These findings demonstrate that CUL2 promoted MAF1 ubiquitination and caused BBB injury in SAE. Through the regulatory loop of PTEN/AKT/FOXO1/MAF1, CUL2 initiated the gradual downregulation of MAF1, which subsequently regulated polymerase III (Pol III)-dependent transcription and played essential roles in cell apoptosis in SAE.

Clinical trial number: not applicable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular & Molecular Biology Letters
Cellular & Molecular Biology Letters 生物-生化与分子生物学
CiteScore
11.60
自引率
13.30%
发文量
101
审稿时长
3 months
期刊介绍: Cellular & Molecular Biology Letters is an international journal dedicated to the dissemination of fundamental knowledge in all areas of cellular and molecular biology, cancer cell biology, and certain aspects of biochemistry, biophysics and biotechnology.
期刊最新文献
Human urine stem cells protect against cyclophosphamide-induced premature ovarian failure by inhibiting SLC1A4-mediated outflux of intracellular serine in ovarian granulosa cells. Tumor-derived exosomal KPNA2 activates fibroblasts and interacts with KIFC1 to promote bladder cancer progression, a process inhibited by miR-26b-5p. Retraction Note: Downregulation of CDKL1 suppresses neuroblastoma cell proliferation, migration and invasion. Sphingolipid metabolites involved in the pathogenesis of atherosclerosis: perspectives on sphingolipids in atherosclerosis. Biosynthesis inhibition of miR-142-5p in a N6-methyladenosine-dependent manner induces neuropathic pain through CDK5/TRPV1 signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1