Pub Date : 2024-11-17DOI: 10.1186/s11658-024-00657-8
Alp Yigit Özdemir, Kateřina Hofbauerová, Vladimír Kopecký, Jiří Novotný, Vladimír Rudajev
Amyloid β42 (Aβ42) plays a decisive role in the pathology of Alzheimer's disease. The Aβ42 peptide can aggregate into various supramolecular structures, with oligomers being the most toxic form. However, different Aβ species that cause different effects have been described. Many cell death pathways can be activated in connection with Aβ action, including apoptosis, necroptosis, pyroptosis, oxidative stress, ferroptosis, alterations in mitophagy, autophagy, and endo/lysosomal functions. In this study, we used a model of differentiated SH-SY5Y cells and applied two different Aβ42 preparations for 2 and 4 days. Although we found no difference in the shape and size of Aβ species prepared by two different methods (NaOH or NH4OH for Aβ solubilization), we observed strong differences in their effects. Treatment of cells with NaOH-Aβ42 mainly resulted in damage of mitochondrial function and increased production of reactive oxygen species, whereas application of NH4OH-Aβ42 induced necroptosis and first steps of apoptosis, but also caused an increase in protective Hsp27. Moreover, the two Aβ42 preparations differed in the mechanism of interaction with the cells, with the effect of NaOH-Aβ42 being dependent on monosialotetrahexosylganglioside (GM1) content, whereas the effect of NH4OH-Aβ42 was independent of GM1. This suggests that, although both preparations were similar in size, minor differences in secondary/tertiary structure are likely to strongly influence the resulting processes. Our work reveals, at least in part, one of the possible causes of the inconsistency in the data observed in different studies on Aβ-toxicity pathways.
{"title":"Different amyloid β42 preparations induce different cell death pathways in the model of SH-SY5Y neuroblastoma cells.","authors":"Alp Yigit Özdemir, Kateřina Hofbauerová, Vladimír Kopecký, Jiří Novotný, Vladimír Rudajev","doi":"10.1186/s11658-024-00657-8","DOIUrl":"10.1186/s11658-024-00657-8","url":null,"abstract":"<p><p>Amyloid β42 (Aβ42) plays a decisive role in the pathology of Alzheimer's disease. The Aβ42 peptide can aggregate into various supramolecular structures, with oligomers being the most toxic form. However, different Aβ species that cause different effects have been described. Many cell death pathways can be activated in connection with Aβ action, including apoptosis, necroptosis, pyroptosis, oxidative stress, ferroptosis, alterations in mitophagy, autophagy, and endo/lysosomal functions. In this study, we used a model of differentiated SH-SY5Y cells and applied two different Aβ42 preparations for 2 and 4 days. Although we found no difference in the shape and size of Aβ species prepared by two different methods (NaOH or NH<sub>4</sub>OH for Aβ solubilization), we observed strong differences in their effects. Treatment of cells with NaOH-Aβ42 mainly resulted in damage of mitochondrial function and increased production of reactive oxygen species, whereas application of NH<sub>4</sub>OH-Aβ42 induced necroptosis and first steps of apoptosis, but also caused an increase in protective Hsp27. Moreover, the two Aβ42 preparations differed in the mechanism of interaction with the cells, with the effect of NaOH-Aβ42 being dependent on monosialotetrahexosylganglioside (GM1) content, whereas the effect of NH<sub>4</sub>OH-Aβ42 was independent of GM1. This suggests that, although both preparations were similar in size, minor differences in secondary/tertiary structure are likely to strongly influence the resulting processes. Our work reveals, at least in part, one of the possible causes of the inconsistency in the data observed in different studies on Aβ-toxicity pathways.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"143"},"PeriodicalIF":9.2,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA splicing is a fundamental step of gene expression. While constitutive splicing removes introns and joins exons unbiasedly, alternative splicing (AS) selectively determines the assembly of exons and introns to generate RNA variants corresponding to the same transcript. The biogenesis of circular RNAs (circRNAs) is inextricably associated with AS. Back-splicing, the biogenic process of circRNA, is a special form of AS. In cancer, both AS and circRNA deviate from the original track. In the present review, we delve into the intricate interplay between AS and circRNAs in the context of cancer. The relationship between AS and circRNAs is intricate, where AS modulates the biogenesis of circRNAs and circRNAs in return regulate AS events. Beyond that, epigenetic and posttranscriptional modifications concurrently regulate AS and circRNAs. On the basis of this modality, we summarize current knowledge on how splicing factors and other RNA binding proteins regulate circRNA biogenesis, and how circRNAs interact with splicing factors to influence AS events. Specifically, the feedback loop regulation between circRNAs and AS events contributes greatly to oncogenesis and cancer progression. In summary, resolving the crosstalk between AS and circRNA will not only provide better insight into cancer biology but also provoke novel strategies to combat cancer.
RNA 剪接是基因表达的基本步骤。组成型剪接会无偏差地去除内含子并连接外显子,而替代型剪接(AS)则会选择性地决定外显子和内含子的组合,从而产生对应于同一转录本的 RNA 变体。环状 RNA(circRNA)的生物生成与 AS 密不可分。circRNA的生物生成过程--反向剪接是AS的一种特殊形式。在癌症中,AS 和 circRNA 都偏离了原来的轨道。在本综述中,我们将深入探讨 AS 和 circRNA 在癌症中错综复杂的相互作用。AS和circRNA之间的关系错综复杂,AS调节circRNA的生物生成,而circRNA则反过来调节AS事件。除此之外,表观遗传和转录后修饰也同时调控着AS和circRNAs。在此基础上,我们总结了目前关于剪接因子和其他 RNA 结合蛋白如何调控 circRNA 生物发生,以及 circRNA 如何与剪接因子相互作用影响 AS 事件的知识。具体而言,circRNA 与 AS 事件之间的反馈回路调控在很大程度上促进了肿瘤发生和癌症进展。总之,解决AS和circRNA之间的串扰问题不仅能让人们更好地了解癌症生物学,还能激发新的抗癌策略。
{"title":"The crosstalk between alternative splicing and circular RNA in cancer: pathogenic insights and therapeutic implications.","authors":"Hongkun Hu, Jinxin Tang, Hua Wang, Xiaoning Guo, Chao Tu, Zhihong Li","doi":"10.1186/s11658-024-00662-x","DOIUrl":"10.1186/s11658-024-00662-x","url":null,"abstract":"<p><p>RNA splicing is a fundamental step of gene expression. While constitutive splicing removes introns and joins exons unbiasedly, alternative splicing (AS) selectively determines the assembly of exons and introns to generate RNA variants corresponding to the same transcript. The biogenesis of circular RNAs (circRNAs) is inextricably associated with AS. Back-splicing, the biogenic process of circRNA, is a special form of AS. In cancer, both AS and circRNA deviate from the original track. In the present review, we delve into the intricate interplay between AS and circRNAs in the context of cancer. The relationship between AS and circRNAs is intricate, where AS modulates the biogenesis of circRNAs and circRNAs in return regulate AS events. Beyond that, epigenetic and posttranscriptional modifications concurrently regulate AS and circRNAs. On the basis of this modality, we summarize current knowledge on how splicing factors and other RNA binding proteins regulate circRNA biogenesis, and how circRNAs interact with splicing factors to influence AS events. Specifically, the feedback loop regulation between circRNAs and AS events contributes greatly to oncogenesis and cancer progression. In summary, resolving the crosstalk between AS and circRNA will not only provide better insight into cancer biology but also provoke novel strategies to combat cancer.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"142"},"PeriodicalIF":9.2,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568689/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1186/s11658-024-00661-y
Zhanhuan Su, Yang Zhang, Jingqiong Tang, Yanhong Zhou, Chen Long
HBO1, also known as KAT7 or MYST2, is a crucial histone acetyltransferase with diverse cellular functions. It typically forms complexes with protein subunits or cofactors such as MEAF6, ING4, or ING5, and JADE1/2/3 or BRPF1/2/3, where the BRPF or JADE proteins serve as the scaffold targeting histone H3 or H4, respectively. The histone acetylation mediated by HBO1 plays significant roles in DNA replication and gene expression regulation. Additionally, HBO1 catalyzes the modification of proteins through acylation with propionyl, butyryl, crotonyl, benzoyl, and acetoacetyl groups. HBO1 undergoes ubiquitination and degradation by two types of ubiquitin complexes and can also act as an E3 ubiquitin ligase for the estrogen receptor α (ERα). Moreover, HBO1 participates in the expansion of medullary thymic epithelial cells (mTECs) and regulates the expression of peripheral tissue genes (PTGs) mediated by autoimmune regulator (AIRE), thus inducing immune tolerance. Furthermore, HBO1 influences the renewal of hematopoietic stem cells and the development of neural stem cells significantly. Importantly, the overexpression of HBO1 in various cancers suggests its carcinogenic role and potential as a therapeutic target. This review summarizes recent advancements in understanding HBO1's involvement in acylation modification, DNA replication, ubiquitination, immunity, and stem cell renewal.
{"title":"Multifunctional acyltransferase HBO1: a key regulatory factor for cellular functions.","authors":"Zhanhuan Su, Yang Zhang, Jingqiong Tang, Yanhong Zhou, Chen Long","doi":"10.1186/s11658-024-00661-y","DOIUrl":"10.1186/s11658-024-00661-y","url":null,"abstract":"<p><p>HBO1, also known as KAT7 or MYST2, is a crucial histone acetyltransferase with diverse cellular functions. It typically forms complexes with protein subunits or cofactors such as MEAF6, ING4, or ING5, and JADE1/2/3 or BRPF1/2/3, where the BRPF or JADE proteins serve as the scaffold targeting histone H3 or H4, respectively. The histone acetylation mediated by HBO1 plays significant roles in DNA replication and gene expression regulation. Additionally, HBO1 catalyzes the modification of proteins through acylation with propionyl, butyryl, crotonyl, benzoyl, and acetoacetyl groups. HBO1 undergoes ubiquitination and degradation by two types of ubiquitin complexes and can also act as an E3 ubiquitin ligase for the estrogen receptor α (ERα). Moreover, HBO1 participates in the expansion of medullary thymic epithelial cells (mTECs) and regulates the expression of peripheral tissue genes (PTGs) mediated by autoimmune regulator (AIRE), thus inducing immune tolerance. Furthermore, HBO1 influences the renewal of hematopoietic stem cells and the development of neural stem cells significantly. Importantly, the overexpression of HBO1 in various cancers suggests its carcinogenic role and potential as a therapeutic target. This review summarizes recent advancements in understanding HBO1's involvement in acylation modification, DNA replication, ubiquitination, immunity, and stem cell renewal.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"141"},"PeriodicalIF":9.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1186/s11658-024-00649-8
Yi Jia, Xiaosu Yuan, Luxin Feng, Qingling Xu, Xinyu Fang, Dandan Xiao, Qi Li, Yu Wang, Lin Ye, Peiyan Wang, Xiang Ao, Jianxun Wang
Background: Circular RNAs (circRNAs) are differentially expressed in various cardiovascular diseases, including myocardial infarction (MI) injury. However, their functional role in necroptosis-induced loss of cardiomyocytes remains unclear. We identified a cardiac necroptosis-associated circRNA transcribed from the Cacna1c gene (circCacna1c) to investigate the involvement of circRNAs in cardiomyocyte necroptosis.
Methods: To investigate the role of circCacna1c during oxidative stress, H9c2 cells and neonatal rat cardiomyocytes were treated with hydrogen peroxide (H2O2) to induce reactive oxygen species (ROS)-induced cardiomyocyte death. The N6-methyladenosine (m6A) modification level of circCacna1c was determined by methylated RNA immunoprecipitation quantitative polymerase chain reaction (MeRIP-qPCR) analysis. Additionally, an RNA pull-down assay was performed to identify interacting proteins of circCacna1c in cardiomyocytes, and the regulatory role of circCacna1c in target protein expression was tested using a western blotting assay. Furthermore, the MI mouse model was constructed to analyze the effect of circCacna1c on heart function and cardiomyocyte necroptosis.
Results: The expression of circCacna1c was found to be reduced in cardiomyocytes exposed to oxidative stress and in mouse hearts injured by MI. Overexpression of circCacna1c inhibited necroptosis of cardiomyocytes induced by hydrogen peroxide and MI injury, resulting in a significant reduction in myocardial infarction size and improved cardiac function. Mechanistically, circCacna1c directly interacts with heterogeneous nuclear ribonucleoprotein F (Hnrnpf) in the cytoplasm, preventing its nuclear translocation and leading to reduced Hnrnpf levels within the nucleus. This subsequently suppresses Hnrnpf-dependent receptor-interacting protein kinase 1 (RIPK1) expression. Furthermore, fat mass and obesity-associated protein (FTO) mediates demethylation of m6A modification on circCacna1c during necrosis and facilitates degradation of circCacna1c.
Conclusion: Our study demonstrates that circCacna1c can improve cardiac function following MI-induced heart injury by inhibiting the Hnrnpf/RIPK1-mediated cardiomyocyte necroptosis. Therefore, the FTO/circCacna1c/Hnrnpf/RIPK1 axis holds great potential as an effective target for attenuating cardiac injury caused by necroptosis in ischemic heart disease.
{"title":"m<sup>6</sup>A-modified circCacna1c regulates necroptosis and ischemic myocardial injury by inhibiting Hnrnpf entry into the nucleus.","authors":"Yi Jia, Xiaosu Yuan, Luxin Feng, Qingling Xu, Xinyu Fang, Dandan Xiao, Qi Li, Yu Wang, Lin Ye, Peiyan Wang, Xiang Ao, Jianxun Wang","doi":"10.1186/s11658-024-00649-8","DOIUrl":"10.1186/s11658-024-00649-8","url":null,"abstract":"<p><strong>Background: </strong>Circular RNAs (circRNAs) are differentially expressed in various cardiovascular diseases, including myocardial infarction (MI) injury. However, their functional role in necroptosis-induced loss of cardiomyocytes remains unclear. We identified a cardiac necroptosis-associated circRNA transcribed from the Cacna1c gene (circCacna1c) to investigate the involvement of circRNAs in cardiomyocyte necroptosis.</p><p><strong>Methods: </strong>To investigate the role of circCacna1c during oxidative stress, H9c2 cells and neonatal rat cardiomyocytes were treated with hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to induce reactive oxygen species (ROS)-induced cardiomyocyte death. The N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modification level of circCacna1c was determined by methylated RNA immunoprecipitation quantitative polymerase chain reaction (MeRIP-qPCR) analysis. Additionally, an RNA pull-down assay was performed to identify interacting proteins of circCacna1c in cardiomyocytes, and the regulatory role of circCacna1c in target protein expression was tested using a western blotting assay. Furthermore, the MI mouse model was constructed to analyze the effect of circCacna1c on heart function and cardiomyocyte necroptosis.</p><p><strong>Results: </strong>The expression of circCacna1c was found to be reduced in cardiomyocytes exposed to oxidative stress and in mouse hearts injured by MI. Overexpression of circCacna1c inhibited necroptosis of cardiomyocytes induced by hydrogen peroxide and MI injury, resulting in a significant reduction in myocardial infarction size and improved cardiac function. Mechanistically, circCacna1c directly interacts with heterogeneous nuclear ribonucleoprotein F (Hnrnpf) in the cytoplasm, preventing its nuclear translocation and leading to reduced Hnrnpf levels within the nucleus. This subsequently suppresses Hnrnpf-dependent receptor-interacting protein kinase 1 (RIPK1) expression. Furthermore, fat mass and obesity-associated protein (FTO) mediates demethylation of m<sup>6</sup>A modification on circCacna1c during necrosis and facilitates degradation of circCacna1c.</p><p><strong>Conclusion: </strong>Our study demonstrates that circCacna1c can improve cardiac function following MI-induced heart injury by inhibiting the Hnrnpf/RIPK1-mediated cardiomyocyte necroptosis. Therefore, the FTO/circCacna1c/Hnrnpf/RIPK1 axis holds great potential as an effective target for attenuating cardiac injury caused by necroptosis in ischemic heart disease.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"140"},"PeriodicalIF":9.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558890/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1186/s11658-024-00655-w
Izabela Czyzynska-Cichon, Jerzy Kotlinowski, Oliwia Blacharczyk, Magdalena Giergiel, Konrad Szymanowski, Sara Metwally, Kamila Wojnar-Lason, Ewelina Dobosz, Joanna Koziel, Malgorzata Lekka, Stefan Chlopicki, Bartlomiej Zapotoczny
Background: Liver sinusoidal endothelial cells (LSECs) have transcellular pores, called fenestrations, participating in the bidirectional transport between the vascular system and liver parenchyma. Fenestrated LSECs indicate a healthy phenotype of liver while loss of fenestrations (defenestration) in LSECs is associated with liver pathologies.
Methods: We introduce a unique model of systemic inflammation triggered by the deletion of Mcpip1 in myeloid leukocytes (Mcpip1fl/flLysMCre) characterised by progressive alterations in LSEC phenotype. We implement multiparametric characterisation of LSECs by using novel real-time atomic force microscopy supported with scanning electron microscopy and quantitative fluorescence microscopy. In addition, we provide genetic profiling, searching for characteristic genes encoding proteins that might be connected with the structure of fenestrations.
Results: We demonstrate that LSECs in Mcpip1fl/flLysMCre display two phases of defenestration: the early phase, with modest defenestration that was fully reversible using cytochalasin B and the late phase, with severe defenestration that is mostly irreversible. By thorough analysis of LSEC porosity, elastic modulus and actin abundance in Mcpip1fl/flLysMCre and in response to cytochalasin B, we demonstrate that proteins other than actin must be additionally responsible for inducing open fenestrations. We highlight several genes that were severely affected in the late but not in the early phase of LSEC defenestration shedding a light on complex structure of individual fenestrations.
Conclusions: The presented model of LSEC derived from Mcpip1fl/flLysMCre provides a valuable reference for developing novel strategies for LSEC refenestration in the early and late phases of liver pathology.
{"title":"Early and late phases of liver sinusoidal endothelial cell (LSEC) defenestration in mouse model of systemic inflammation.","authors":"Izabela Czyzynska-Cichon, Jerzy Kotlinowski, Oliwia Blacharczyk, Magdalena Giergiel, Konrad Szymanowski, Sara Metwally, Kamila Wojnar-Lason, Ewelina Dobosz, Joanna Koziel, Malgorzata Lekka, Stefan Chlopicki, Bartlomiej Zapotoczny","doi":"10.1186/s11658-024-00655-w","DOIUrl":"10.1186/s11658-024-00655-w","url":null,"abstract":"<p><strong>Background: </strong>Liver sinusoidal endothelial cells (LSECs) have transcellular pores, called fenestrations, participating in the bidirectional transport between the vascular system and liver parenchyma. Fenestrated LSECs indicate a healthy phenotype of liver while loss of fenestrations (defenestration) in LSECs is associated with liver pathologies.</p><p><strong>Methods: </strong>We introduce a unique model of systemic inflammation triggered by the deletion of Mcpip1 in myeloid leukocytes (Mcpip1<sup>fl/fl</sup>LysM<sup>Cre</sup>) characterised by progressive alterations in LSEC phenotype. We implement multiparametric characterisation of LSECs by using novel real-time atomic force microscopy supported with scanning electron microscopy and quantitative fluorescence microscopy. In addition, we provide genetic profiling, searching for characteristic genes encoding proteins that might be connected with the structure of fenestrations.</p><p><strong>Results: </strong>We demonstrate that LSECs in Mcpip1<sup>fl/fl</sup>LysM<sup>Cre</sup> display two phases of defenestration: the early phase, with modest defenestration that was fully reversible using cytochalasin B and the late phase, with severe defenestration that is mostly irreversible. By thorough analysis of LSEC porosity, elastic modulus and actin abundance in Mcpip1<sup>fl/fl</sup>LysM<sup>Cre</sup> and in response to cytochalasin B, we demonstrate that proteins other than actin must be additionally responsible for inducing open fenestrations. We highlight several genes that were severely affected in the late but not in the early phase of LSEC defenestration shedding a light on complex structure of individual fenestrations.</p><p><strong>Conclusions: </strong>The presented model of LSEC derived from Mcpip1<sup>fl/fl</sup>LysM<sup>Cre</sup> provides a valuable reference for developing novel strategies for LSEC refenestration in the early and late phases of liver pathology.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"139"},"PeriodicalIF":9.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1186/s11658-024-00659-6
Jiufeng Xie, Cui Yuan, Sen Yang, Zhenling Ma, Wenqing Li, Lin Mao, Pengtao Jiao, Wei Liu
Coronavirus disease 2019 (COVID-19) represents the novel respiratory infectious disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is characterized by rapid spread throughout the world. Reactive oxygen species (ROS) account for cellular metabolic by-products, and excessive ROS accumulation can induce oxidative stress due to insufficient endogenous antioxidant ability. In the case of oxidative stress, ROS production exceeds the cellular antioxidant capacity, thus leading to cell death. SARS-CoV-2 can activate different cell death pathways in the context of infection in host cells, such as neutrophil extracellular trap (NET)osis, ferroptosis, apoptosis, pyroptosis, necroptosis and autophagy, which are closely related to ROS signalling and control. In this review, we comprehensively elucidated the relationship between ROS generation and the death of host cells after SARS-CoV-2 infection, which leads to the development of COVID-19, aiming to provide a reasonable basis for the existing interventions and further development of novel therapies against SARS-CoV-2.
{"title":"The role of reactive oxygen species in severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection-induced cell death.","authors":"Jiufeng Xie, Cui Yuan, Sen Yang, Zhenling Ma, Wenqing Li, Lin Mao, Pengtao Jiao, Wei Liu","doi":"10.1186/s11658-024-00659-6","DOIUrl":"10.1186/s11658-024-00659-6","url":null,"abstract":"<p><p>Coronavirus disease 2019 (COVID-19) represents the novel respiratory infectious disorder caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is characterized by rapid spread throughout the world. Reactive oxygen species (ROS) account for cellular metabolic by-products, and excessive ROS accumulation can induce oxidative stress due to insufficient endogenous antioxidant ability. In the case of oxidative stress, ROS production exceeds the cellular antioxidant capacity, thus leading to cell death. SARS-CoV-2 can activate different cell death pathways in the context of infection in host cells, such as neutrophil extracellular trap (NET)osis, ferroptosis, apoptosis, pyroptosis, necroptosis and autophagy, which are closely related to ROS signalling and control. In this review, we comprehensively elucidated the relationship between ROS generation and the death of host cells after SARS-CoV-2 infection, which leads to the development of COVID-19, aiming to provide a reasonable basis for the existing interventions and further development of novel therapies against SARS-CoV-2.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"138"},"PeriodicalIF":9.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549821/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-13DOI: 10.1186/s11658-023-00505-1
Yihan Xu, Chunying Zhang, Danni Cai, Rongping Zhu, Yingping Cao
Background: Hypervirulent Klebsiella pneumoniae (hvKp) infection-induced sepsis-associated acute lung injury (ALI) has emerged as a significant clinical challenge. Increasing evidence suggests that activated inflammatory macrophages contribute to tissue damage in sepsis. However, the underlying causes of widespread macrophage activation remain unclear.
Methods: BALB/c mice were intravenously injected with inactivated hvKp (iHvKp) to observe lung tissue damage, inflammation, and M1 macrophage polarization. In vitro, activated RAW264.7 macrophage-derived exosomes (iHvKp-exo) were isolated and their role in ALI formation was investigated. RT-PCR was conducted to identify changes in exosomal miRNA. Bioinformatics analysis and dual-luciferase reporter assays were performed to validate MSK1 as a direct target of miR-155-5p. Further in vivo and in vitro experiments were conducted to explore the specific mechanisms involved.
Results: iHvKp successfully induced ALI in vivo and upregulated the expression of miR-155-5p. In vivo, injection of iHvKp-exo induced inflammatory tissue damage and macrophage M1 polarization. In vitro, iHvKp-exo was found to promote macrophage inflammatory response and M1 polarization through the activation of the p38-MAPK pathway. RT-PCR revealed exposure time-dependent increased levels of miR-155-5p in iHvKp-exo. Dual-luciferase reporter assays confirmed the functional role of miR-155-5p in mediating iHvKp-exo effects by targeting MSK1. Additionally, inhibition of miR-155-5p reduced M1 polarization of lung macrophages in vivo, resulting in decreased lung injury and inflammation induced by iHvKp-exo or iHvKp.
Conclusions: The aforementioned results indicate that exosomal miR-155-5p drives widespread macrophage inflammation and M1 polarization in hvKp-induced ALI through the MSK1/p38-MAPK Axis.
{"title":"Exosomal miR-155-5p drives widespread macrophage M1 polarization in hypervirulent Klebsiella pneumoniae-induced acute lung injury via the MSK1/p38-MAPK axis.","authors":"Yihan Xu, Chunying Zhang, Danni Cai, Rongping Zhu, Yingping Cao","doi":"10.1186/s11658-023-00505-1","DOIUrl":"10.1186/s11658-023-00505-1","url":null,"abstract":"<p><strong>Background: </strong>Hypervirulent Klebsiella pneumoniae (hvKp) infection-induced sepsis-associated acute lung injury (ALI) has emerged as a significant clinical challenge. Increasing evidence suggests that activated inflammatory macrophages contribute to tissue damage in sepsis. However, the underlying causes of widespread macrophage activation remain unclear.</p><p><strong>Methods: </strong>BALB/c mice were intravenously injected with inactivated hvKp (iHvKp) to observe lung tissue damage, inflammation, and M1 macrophage polarization. In vitro, activated RAW264.7 macrophage-derived exosomes (iHvKp-exo) were isolated and their role in ALI formation was investigated. RT-PCR was conducted to identify changes in exosomal miRNA. Bioinformatics analysis and dual-luciferase reporter assays were performed to validate MSK1 as a direct target of miR-155-5p. Further in vivo and in vitro experiments were conducted to explore the specific mechanisms involved.</p><p><strong>Results: </strong>iHvKp successfully induced ALI in vivo and upregulated the expression of miR-155-5p. In vivo, injection of iHvKp-exo induced inflammatory tissue damage and macrophage M1 polarization. In vitro, iHvKp-exo was found to promote macrophage inflammatory response and M1 polarization through the activation of the p38-MAPK pathway. RT-PCR revealed exposure time-dependent increased levels of miR-155-5p in iHvKp-exo. Dual-luciferase reporter assays confirmed the functional role of miR-155-5p in mediating iHvKp-exo effects by targeting MSK1. Additionally, inhibition of miR-155-5p reduced M1 polarization of lung macrophages in vivo, resulting in decreased lung injury and inflammation induced by iHvKp-exo or iHvKp.</p><p><strong>Conclusions: </strong>The aforementioned results indicate that exosomal miR-155-5p drives widespread macrophage inflammation and M1 polarization in hvKp-induced ALI through the MSK1/p38-MAPK Axis.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"28 1","pages":"92"},"PeriodicalIF":8.3,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10641976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89717022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: To investigate the mechanism of action of Srg3 in acute lung injury caused by sepsis.
Methods: First, a sepsis-induced acute lung injury rat model was established using cecal ligation and puncture (CLP). RNA sequencing (RNA-seq) was used to screen for highly expressed genes in sepsis-induced acute lung injury (ALI), and the results showed that Srg3 was significantly upregulated. Then, SWI3-related gene 3 (Srg3) was knocked down using AAV9 vector in vivo, and changes in ALI symptoms in rats were analyzed. In vitro experiments were conducted by establishing a cell model using lipopolysaccharide (LPS)-induced BEAS-2B cells and coculturing them with phorbol 12-myristate 13-acetate (PMA)-treated THP-1 cells to analyze macrophage polarization. Next, downstream signaling pathways regulated by Srg3 and transcription factors involved in regulating Srg3 expression were analyzed using the KEGG database. Finally, gain-of-loss functional validation experiments were performed to analyze the role of downstream signaling pathways regulated by Srg3 and transcription factors involved in regulating Srg3 expression in sepsis-induced acute lung injury.
Results: Srg3 was significantly upregulated in sepsis-induced acute lung injury, and knocking down Srg3 significantly improved the symptoms of ALI in rats. Furthermore, in vitro experiments showed that knocking down Srg3 significantly weakened the inhibitory effect of LPS on the viability of BEAS-2B cells and promoted alternative activation phenotype (M2) macrophage polarization. Subsequent experiments showed that Srg3 can regulate the activation of the NF-κB signaling pathway and promote ferroptosis. Specific activation of the NF-κB signaling pathway or ferroptosis significantly weakened the effect of Srg3 knockdown. It was then found that Srg3 can be transcriptionally activated by interferon regulatory factor 7 (Irf7), and specific inhibition of Irf7 significantly improved the symptoms of ALI.
Conclusions: Irf7 transcriptionally activates the expression of Srg3, which can promote ferroptosis and activate classical activation phenotype (M1) macrophage polarization by regulating the NF-κB signaling pathway, thereby exacerbating the symptoms of septic lung injury.
{"title":"Irf7 regulates the expression of Srg3 and ferroptosis axis aggravated sepsis-induced acute lung injury.","authors":"Xinyu Ling, Shiyou Wei, Dandan Ling, Siqi Cao, Rui Chang, Qiuyun Wang, Zhize Yuan","doi":"10.1186/s11658-023-00495-0","DOIUrl":"10.1186/s11658-023-00495-0","url":null,"abstract":"<p><strong>Objective: </strong>To investigate the mechanism of action of Srg3 in acute lung injury caused by sepsis.</p><p><strong>Methods: </strong>First, a sepsis-induced acute lung injury rat model was established using cecal ligation and puncture (CLP). RNA sequencing (RNA-seq) was used to screen for highly expressed genes in sepsis-induced acute lung injury (ALI), and the results showed that Srg3 was significantly upregulated. Then, SWI3-related gene 3 (Srg3) was knocked down using AAV9 vector in vivo, and changes in ALI symptoms in rats were analyzed. In vitro experiments were conducted by establishing a cell model using lipopolysaccharide (LPS)-induced BEAS-2B cells and coculturing them with phorbol 12-myristate 13-acetate (PMA)-treated THP-1 cells to analyze macrophage polarization. Next, downstream signaling pathways regulated by Srg3 and transcription factors involved in regulating Srg3 expression were analyzed using the KEGG database. Finally, gain-of-loss functional validation experiments were performed to analyze the role of downstream signaling pathways regulated by Srg3 and transcription factors involved in regulating Srg3 expression in sepsis-induced acute lung injury.</p><p><strong>Results: </strong>Srg3 was significantly upregulated in sepsis-induced acute lung injury, and knocking down Srg3 significantly improved the symptoms of ALI in rats. Furthermore, in vitro experiments showed that knocking down Srg3 significantly weakened the inhibitory effect of LPS on the viability of BEAS-2B cells and promoted alternative activation phenotype (M2) macrophage polarization. Subsequent experiments showed that Srg3 can regulate the activation of the NF-κB signaling pathway and promote ferroptosis. Specific activation of the NF-κB signaling pathway or ferroptosis significantly weakened the effect of Srg3 knockdown. It was then found that Srg3 can be transcriptionally activated by interferon regulatory factor 7 (Irf7), and specific inhibition of Irf7 significantly improved the symptoms of ALI.</p><p><strong>Conclusions: </strong>Irf7 transcriptionally activates the expression of Srg3, which can promote ferroptosis and activate classical activation phenotype (M1) macrophage polarization by regulating the NF-κB signaling pathway, thereby exacerbating the symptoms of septic lung injury.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"28 1","pages":"91"},"PeriodicalIF":8.3,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72013628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-07DOI: 10.1186/s11658-023-00506-0
Wenqin Xu, Xiaocui Ma, Qing Wang, Jingjing Ye, Nengqian Wang, Zhenzhen Ye, Tianbing Chen
Background: The pulmonary surfactant that lines the air-liquid surface within alveoli is a protein-lipid mixture essential for gas exchange. Surfactant lipids and proteins are synthesized and stored in the lamellar body (LB) before being secreted from alveolar type II (AT2) cells. The molecular and cellular mechanisms that regulate these processes are incompletely understood. We previously identified an essential role of general control of amino acid synthesis 5 like 1 (GCN5L1) and the biogenesis of lysosome-related organelle complex 1 subunit 1 (BLOS1) in surfactant system development in zebrafish. Here, we explored the role of GCN5L1 in pulmonary surfactant regulation.
Method: GCN5L1 knockout cell lines were generated with the CRISPR/Cas9 system. Cell viability was analyzed by MTT assay. Released surfactant proteins were measured by ELISA. Released surfactant lipids were measured based on coupled enzymatic reactions. Gene overexpression was mediated through lentivirus. The RNA levels were detected through RNA-sequencing (RNA-seq) and quantitative reverse transcription (qRT)- polymerase chain reaction (PCR). The protein levels were detected through western blotting. The cellular localization was analyzed by immunofluorescence. Morphology of the lamellar body was analyzed through transmission electron microscopy (TEM), Lysotracker staining, and BODIPY phosphatidylcholine labeling.
Results: Knocking out GCN5L1 in MLE-12 significantly decreased the release of surfactant proteins and lipids. We detected the downregulation of some surfactant-related genes and misregulation of the ROS-Erk-Foxo1-Cebpα axis in mutant cells. Modulating the activity of the axis or reconstructing the mitochondrial expression of GCN5L1 could partially restore the expression of these surfactant-related genes. We further showed that MLE-12 cells contained many LB-like organelles that were lipid enriched and positive for multiple LB markers. These organelles were smaller in size and accumulated in the absence of GCN5L1, indicating both biogenesis and trafficking defects. Accumulated endogenous surfactant protein (SP)-B or exogenously expressed SP-B/SP-C in adenosine triphosphate-binding cassette transporterA3 (ABCA3)-positive organelles was detected in mutant cells. GCN5L1 localized to the mitochondria and LBs. Reconstruction of mitochondrial GCN5L1 expression rescued the organelle morphology but failed to restore the trafficking defect and surfactant release, indicating specific roles associated with different subcellular localizations.
Conclusions: In summary, our study identified GCN5L1 as a new regulator of pulmonary surfactant that plays a role in the biogenesis and positioning/trafficking of surfactant-containing LBs.
{"title":"GCN5L1 regulates pulmonary surfactant production by modulating lamellar body biogenesis and trafficking in mouse alveolar epithelial cells.","authors":"Wenqin Xu, Xiaocui Ma, Qing Wang, Jingjing Ye, Nengqian Wang, Zhenzhen Ye, Tianbing Chen","doi":"10.1186/s11658-023-00506-0","DOIUrl":"10.1186/s11658-023-00506-0","url":null,"abstract":"<p><strong>Background: </strong>The pulmonary surfactant that lines the air-liquid surface within alveoli is a protein-lipid mixture essential for gas exchange. Surfactant lipids and proteins are synthesized and stored in the lamellar body (LB) before being secreted from alveolar type II (AT2) cells. The molecular and cellular mechanisms that regulate these processes are incompletely understood. We previously identified an essential role of general control of amino acid synthesis 5 like 1 (GCN5L1) and the biogenesis of lysosome-related organelle complex 1 subunit 1 (BLOS1) in surfactant system development in zebrafish. Here, we explored the role of GCN5L1 in pulmonary surfactant regulation.</p><p><strong>Method: </strong>GCN5L1 knockout cell lines were generated with the CRISPR/Cas9 system. Cell viability was analyzed by MTT assay. Released surfactant proteins were measured by ELISA. Released surfactant lipids were measured based on coupled enzymatic reactions. Gene overexpression was mediated through lentivirus. The RNA levels were detected through RNA-sequencing (RNA-seq) and quantitative reverse transcription (qRT)- polymerase chain reaction (PCR). The protein levels were detected through western blotting. The cellular localization was analyzed by immunofluorescence. Morphology of the lamellar body was analyzed through transmission electron microscopy (TEM), Lysotracker staining, and BODIPY phosphatidylcholine labeling.</p><p><strong>Results: </strong>Knocking out GCN5L1 in MLE-12 significantly decreased the release of surfactant proteins and lipids. We detected the downregulation of some surfactant-related genes and misregulation of the ROS-Erk-Foxo1-Cebpα axis in mutant cells. Modulating the activity of the axis or reconstructing the mitochondrial expression of GCN5L1 could partially restore the expression of these surfactant-related genes. We further showed that MLE-12 cells contained many LB-like organelles that were lipid enriched and positive for multiple LB markers. These organelles were smaller in size and accumulated in the absence of GCN5L1, indicating both biogenesis and trafficking defects. Accumulated endogenous surfactant protein (SP)-B or exogenously expressed SP-B/SP-C in adenosine triphosphate-binding cassette transporterA3 (ABCA3)-positive organelles was detected in mutant cells. GCN5L1 localized to the mitochondria and LBs. Reconstruction of mitochondrial GCN5L1 expression rescued the organelle morphology but failed to restore the trafficking defect and surfactant release, indicating specific roles associated with different subcellular localizations.</p><p><strong>Conclusions: </strong>In summary, our study identified GCN5L1 as a new regulator of pulmonary surfactant that plays a role in the biogenesis and positioning/trafficking of surfactant-containing LBs.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"28 1","pages":"90"},"PeriodicalIF":8.3,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10631113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71478515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-27DOI: 10.1186/s11658-023-00498-x
Jian Sun, Yan Chen, Tao Wang, Waseem Ali, Yonggang Ma, Yan Yuan, Jianhong Gu, Jianchun Bian, Zongping Liu, Hui Zou
Mitochondrial transfer regulates intercellular communication, and mitochondria regulate cell metabolism and cell survival. However, the role and mechanism of mitochondrial transfer in Cd-induced nonalcoholic fatty liver disease (NAFLD) are unclear. The present study shows that mitochondria can be transferred between hepatocytes via microtubule-dependent tunneling nanotubes. After Cd treatment, mitochondria exhibit perinuclear aggregation in hepatocytes and blocked intercellular mitochondrial transfer. The different movement directions of mitochondria depend on their interaction with different motor proteins. The results show that Cd destroys the mitochondria-kinesin interaction, thus inhibiting mitochondrial transfer. Moreover, Cd increases the interaction of P62 with Dynactin1, promotes negative mitochondrial transport, and increases intracellular lipid accumulation. Mitochondria and hepatocyte co-culture significantly reduced Cd damage to hepatocytes and lipid accumulation. Thus, Cd blocks intercellular mitochondrial transfer by disrupting the microtubule system, inhibiting mitochondrial positive transport, and promoting their negative transport, thereby promoting the development of NAFLD.
{"title":"Cadmium promotes nonalcoholic fatty liver disease by inhibiting intercellular mitochondrial transfer.","authors":"Jian Sun, Yan Chen, Tao Wang, Waseem Ali, Yonggang Ma, Yan Yuan, Jianhong Gu, Jianchun Bian, Zongping Liu, Hui Zou","doi":"10.1186/s11658-023-00498-x","DOIUrl":"10.1186/s11658-023-00498-x","url":null,"abstract":"<p><p>Mitochondrial transfer regulates intercellular communication, and mitochondria regulate cell metabolism and cell survival. However, the role and mechanism of mitochondrial transfer in Cd-induced nonalcoholic fatty liver disease (NAFLD) are unclear. The present study shows that mitochondria can be transferred between hepatocytes via microtubule-dependent tunneling nanotubes. After Cd treatment, mitochondria exhibit perinuclear aggregation in hepatocytes and blocked intercellular mitochondrial transfer. The different movement directions of mitochondria depend on their interaction with different motor proteins. The results show that Cd destroys the mitochondria-kinesin interaction, thus inhibiting mitochondrial transfer. Moreover, Cd increases the interaction of P62 with Dynactin1, promotes negative mitochondrial transport, and increases intracellular lipid accumulation. Mitochondria and hepatocyte co-culture significantly reduced Cd damage to hepatocytes and lipid accumulation. Thus, Cd blocks intercellular mitochondrial transfer by disrupting the microtubule system, inhibiting mitochondrial positive transport, and promoting their negative transport, thereby promoting the development of NAFLD.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"28 1","pages":"87"},"PeriodicalIF":8.3,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54227798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}