印度三个农业生态区鸽豆黄花叶病begomovirus的分子特征

IF 2.3 3区 生物学 Q3 MICROBIOLOGY Current Microbiology Pub Date : 2025-01-20 DOI:10.1007/s00284-025-04080-w
Mohammad Akram, Deepender Kumar, Sonu Saurav, Moly Saxena, Deep Ratna Saxena, Naimuddin Kamaal, Girish Prasad Dixit
{"title":"印度三个农业生态区鸽豆黄花叶病begomovirus的分子特征","authors":"Mohammad Akram, Deepender Kumar, Sonu Saurav, Moly Saxena, Deep Ratna Saxena, Naimuddin Kamaal, Girish Prasad Dixit","doi":"10.1007/s00284-025-04080-w","DOIUrl":null,"url":null,"abstract":"<p><p>Pigeonpea (Cajanus cajan L.) plants exhibiting symptoms of yellow mosaic disease (YMD) were collected in winter 2023 from multiple agricultural fields of Kanpur, Sehore, and Madhubani, representing three different agro-ecological zones in India. The recorded disease incidence ranged from 3 to 5%, 1 to 4%, and 12 to 20% in these zones, respectively. This study aimed to identify and characterize the causal agent, suspected to be a begomovirus, an emerging plant pathogen of pigeonpea causing YMD. Total DNA was extracted from 28 YMD-affected leaf samples and subjected to rolling circle amplification for PCR-based virus detection. Of all the tested samples, one tested positive for mungbean yellow mosaic virus (MYMV), while the remaining tested positive for mungbean yellow mosaic India virus (MYMIV). Subsequently, PCR-based amplification and sequencing of the full-length DNA-A and DNA-B components were conducted. BLASTn analysis revealed that the assembled sequences of the DNA-A and DNA-B components had the highest nucleotide identity with MYMIV (DNA-A: 97-99%, DNA-B: 95-97%) and MYMV (DNA-A: 99%, DNA-B: 98%). Phylogenetic analysis supported these findings. Additionally, the DNA-A and DNA-B components obtained from each sample were found to be cognate, with over 92% similarity in their common region. Thus, the cognate DNA components constituted the isolates of MYMIV and MYMV identified from pigeonpea. The identified isolates exhibited the typical genome organization of an Old World bipartite begomovirus, with no recombination events detected. This study reports, for the first time, the complete annotated genomes of MYMIV from Sehore and Madhubani, as well as MYMIV and MYMV from Kanpur, infecting pigeonpea.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 2","pages":"95"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Characterization of Yellow Mosaic Disease Causing Begomoviruses in Pigeonpea (Cajanus cajan L.) from Three Agro-ecological Zones of India.\",\"authors\":\"Mohammad Akram, Deepender Kumar, Sonu Saurav, Moly Saxena, Deep Ratna Saxena, Naimuddin Kamaal, Girish Prasad Dixit\",\"doi\":\"10.1007/s00284-025-04080-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pigeonpea (Cajanus cajan L.) plants exhibiting symptoms of yellow mosaic disease (YMD) were collected in winter 2023 from multiple agricultural fields of Kanpur, Sehore, and Madhubani, representing three different agro-ecological zones in India. The recorded disease incidence ranged from 3 to 5%, 1 to 4%, and 12 to 20% in these zones, respectively. This study aimed to identify and characterize the causal agent, suspected to be a begomovirus, an emerging plant pathogen of pigeonpea causing YMD. Total DNA was extracted from 28 YMD-affected leaf samples and subjected to rolling circle amplification for PCR-based virus detection. Of all the tested samples, one tested positive for mungbean yellow mosaic virus (MYMV), while the remaining tested positive for mungbean yellow mosaic India virus (MYMIV). Subsequently, PCR-based amplification and sequencing of the full-length DNA-A and DNA-B components were conducted. BLASTn analysis revealed that the assembled sequences of the DNA-A and DNA-B components had the highest nucleotide identity with MYMIV (DNA-A: 97-99%, DNA-B: 95-97%) and MYMV (DNA-A: 99%, DNA-B: 98%). Phylogenetic analysis supported these findings. Additionally, the DNA-A and DNA-B components obtained from each sample were found to be cognate, with over 92% similarity in their common region. Thus, the cognate DNA components constituted the isolates of MYMIV and MYMV identified from pigeonpea. The identified isolates exhibited the typical genome organization of an Old World bipartite begomovirus, with no recombination events detected. This study reports, for the first time, the complete annotated genomes of MYMIV from Sehore and Madhubani, as well as MYMIV and MYMV from Kanpur, infecting pigeonpea.</p>\",\"PeriodicalId\":11360,\"journal\":{\"name\":\"Current Microbiology\",\"volume\":\"82 2\",\"pages\":\"95\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00284-025-04080-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-025-04080-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文于2023年冬季在印度坎普尔(Kanpur)、塞霍尔(Sehore)和马德胡巴尼(Madhubani) 3个不同农业生态区域的多个农田中采集到了表现出黄花叶病(YMD)症状的Pigeonpea (Cajanus cajan L.)植物。这些地区记录的疾病发病率分别为3%至5%、1%至4%和12%至20%。本研究的目的是鉴定和鉴定引起YMD的病原,怀疑是一种鸽子豌豆新出现的植物病原体begomvirus。从28个ymd感染的叶片样品中提取总DNA,并进行滚圈扩增,进行pcr病毒检测。在所有检测样本中,一份绿豆黄花叶病毒(MYMV)检测呈阳性,其余绿豆黄花叶印度病毒(MYMIV)检测呈阳性。随后,对全长DNA-A和DNA-B组分进行pcr扩增和测序。BLASTn分析显示,DNA-A和DNA-B组分的组装序列与MYMIV (DNA-A: 97-99%, DNA-B: 95-97%)和MYMV (DNA-A: 99%, DNA-B: 98%)的核苷酸一致性最高。系统发育分析支持了这些发现。此外,从每个样本中获得的DNA-A和DNA-B成分被发现是同源的,其共同区域的相似性超过92%。因此,同源DNA成分构成了从鸽豌豆中鉴定出的MYMIV和MYMV分离株。鉴定的分离株表现出旧大陆双部begomavirus的典型基因组组织,未检测到重组事件。本研究首次报道了来自sehoore和Madhubani的MYMIV,以及来自Kanpur的MYMIV和MYMV感染鸽子豌豆的完整注释基因组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular Characterization of Yellow Mosaic Disease Causing Begomoviruses in Pigeonpea (Cajanus cajan L.) from Three Agro-ecological Zones of India.

Pigeonpea (Cajanus cajan L.) plants exhibiting symptoms of yellow mosaic disease (YMD) were collected in winter 2023 from multiple agricultural fields of Kanpur, Sehore, and Madhubani, representing three different agro-ecological zones in India. The recorded disease incidence ranged from 3 to 5%, 1 to 4%, and 12 to 20% in these zones, respectively. This study aimed to identify and characterize the causal agent, suspected to be a begomovirus, an emerging plant pathogen of pigeonpea causing YMD. Total DNA was extracted from 28 YMD-affected leaf samples and subjected to rolling circle amplification for PCR-based virus detection. Of all the tested samples, one tested positive for mungbean yellow mosaic virus (MYMV), while the remaining tested positive for mungbean yellow mosaic India virus (MYMIV). Subsequently, PCR-based amplification and sequencing of the full-length DNA-A and DNA-B components were conducted. BLASTn analysis revealed that the assembled sequences of the DNA-A and DNA-B components had the highest nucleotide identity with MYMIV (DNA-A: 97-99%, DNA-B: 95-97%) and MYMV (DNA-A: 99%, DNA-B: 98%). Phylogenetic analysis supported these findings. Additionally, the DNA-A and DNA-B components obtained from each sample were found to be cognate, with over 92% similarity in their common region. Thus, the cognate DNA components constituted the isolates of MYMIV and MYMV identified from pigeonpea. The identified isolates exhibited the typical genome organization of an Old World bipartite begomovirus, with no recombination events detected. This study reports, for the first time, the complete annotated genomes of MYMIV from Sehore and Madhubani, as well as MYMIV and MYMV from Kanpur, infecting pigeonpea.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
期刊最新文献
Photobiostimulation of Saccharomyces cerevisiae with Nano Cobalt Ferrite: A Sustainable Approach to Bioethanol Production from Banana Peels. The Rhizospheric Alkali-Halotolerant Bacillus sp. KhSb-159 Enhanced Growth Parameters of the Mung Bean Crop. Evaluation of Antibiotic-Sensitive Bacillus Strain as a Potential Probiotic for Enhanced Growth in Penaeus vannamei. Overexpressing Endopeptidase Inhibitor IseA Enhances Biomass and Biochemical Production of Bacillus licheniformis. Phenotypic and Molecular Characterization of Extended-Spectrum β-Lactamase, Plasmid-Mediated- AmpC, and Carbapenemase-Producing Enterobacteriaceae Isolated from Companion and Production Animals in Brazil.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1