Muhammad Naveed Aslam, Huma Khaliq, Hongwei Zhao, Anam Moosa, Ambreen Maqsood, Muhammad Aslam Farooqi, Muhammad Saqib Bilal, Tahir Mahmood, Tariq Mukhtar
{"title":"百里香酚作为抑制柑橘黄单胞菌的新型植物源抗菌剂。棉花中的malvacearum。","authors":"Muhammad Naveed Aslam, Huma Khaliq, Hongwei Zhao, Anam Moosa, Ambreen Maqsood, Muhammad Aslam Farooqi, Muhammad Saqib Bilal, Tahir Mahmood, Tariq Mukhtar","doi":"10.1007/s00284-025-04077-5","DOIUrl":null,"url":null,"abstract":"<p><p>Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety. Thymol is a monoterpene phenol present in the essential oils of plants belonging to Lamiaceae family. In this study the antimicrobial activity of thymol was evaluated against Xcm. The minimum inhibitory concentration (MIC) and 99.9% bactericidal concentration (MBC) of thymol against Xcm were 2 and 4 mg/mL, respectively. The effect of MIC and MBC of thymol against Xcm was assessed on the Luria-Bertani medium. The effect of thymol on intercellular ATP levels, membrane potential, and motility in Xcm was assessed using fluorescence spectrometry for membrane potential and firefly luciferase-based assay for ATP levels. Thymol ruptured the cellular membrane of Xcm, resulting in decreased intracellular ATP concentrations, intracellular leakage of genetic material, and changes in membrane potential. Scanning electron microscopy images supported the impact of thymol on the cell membrane of Xcm. Moreover, thymol inhibited the swimming motility and biofilm formation of Xcm at concentrations equal to or above the MIC and MBC. In contrast, sub-MIC concentrations of thymol had little to no impact on the virulence of Xcm. In conclusion, thymol demonstrated the potential as a strong bactericidal compound against Xcm.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 3","pages":"99"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thymol as a Novel Plant-Derived Antibacterial Agent for Suppressing Xanthomonas citri pv. malvacearum in Cotton.\",\"authors\":\"Muhammad Naveed Aslam, Huma Khaliq, Hongwei Zhao, Anam Moosa, Ambreen Maqsood, Muhammad Aslam Farooqi, Muhammad Saqib Bilal, Tahir Mahmood, Tariq Mukhtar\",\"doi\":\"10.1007/s00284-025-04077-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety. Thymol is a monoterpene phenol present in the essential oils of plants belonging to Lamiaceae family. In this study the antimicrobial activity of thymol was evaluated against Xcm. The minimum inhibitory concentration (MIC) and 99.9% bactericidal concentration (MBC) of thymol against Xcm were 2 and 4 mg/mL, respectively. The effect of MIC and MBC of thymol against Xcm was assessed on the Luria-Bertani medium. The effect of thymol on intercellular ATP levels, membrane potential, and motility in Xcm was assessed using fluorescence spectrometry for membrane potential and firefly luciferase-based assay for ATP levels. Thymol ruptured the cellular membrane of Xcm, resulting in decreased intracellular ATP concentrations, intracellular leakage of genetic material, and changes in membrane potential. Scanning electron microscopy images supported the impact of thymol on the cell membrane of Xcm. Moreover, thymol inhibited the swimming motility and biofilm formation of Xcm at concentrations equal to or above the MIC and MBC. In contrast, sub-MIC concentrations of thymol had little to no impact on the virulence of Xcm. In conclusion, thymol demonstrated the potential as a strong bactericidal compound against Xcm.</p>\",\"PeriodicalId\":11360,\"journal\":{\"name\":\"Current Microbiology\",\"volume\":\"82 3\",\"pages\":\"99\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00284-025-04077-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-025-04077-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Thymol as a Novel Plant-Derived Antibacterial Agent for Suppressing Xanthomonas citri pv. malvacearum in Cotton.
Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety. Thymol is a monoterpene phenol present in the essential oils of plants belonging to Lamiaceae family. In this study the antimicrobial activity of thymol was evaluated against Xcm. The minimum inhibitory concentration (MIC) and 99.9% bactericidal concentration (MBC) of thymol against Xcm were 2 and 4 mg/mL, respectively. The effect of MIC and MBC of thymol against Xcm was assessed on the Luria-Bertani medium. The effect of thymol on intercellular ATP levels, membrane potential, and motility in Xcm was assessed using fluorescence spectrometry for membrane potential and firefly luciferase-based assay for ATP levels. Thymol ruptured the cellular membrane of Xcm, resulting in decreased intracellular ATP concentrations, intracellular leakage of genetic material, and changes in membrane potential. Scanning electron microscopy images supported the impact of thymol on the cell membrane of Xcm. Moreover, thymol inhibited the swimming motility and biofilm formation of Xcm at concentrations equal to or above the MIC and MBC. In contrast, sub-MIC concentrations of thymol had little to no impact on the virulence of Xcm. In conclusion, thymol demonstrated the potential as a strong bactericidal compound against Xcm.
期刊介绍:
Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment.
Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas:
physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.