一种新的间质细胞独家Cre系允许在小鼠胚胎和成年间质细胞群中进行谱系追踪。

IF 3.8 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Endocrinology Pub Date : 2025-01-06 DOI:10.1210/endocr/bqaf012
Nicholas M Robert, Shirley Ferrier-Tarin, Jacques J Tremblay
{"title":"一种新的间质细胞独家Cre系允许在小鼠胚胎和成年间质细胞群中进行谱系追踪。","authors":"Nicholas M Robert, Shirley Ferrier-Tarin, Jacques J Tremblay","doi":"10.1210/endocr/bqaf012","DOIUrl":null,"url":null,"abstract":"<p><p>Leydig cells produce hormones that are required for male development, fertility, and health. Two Leydig cell populations produce these hormones but at different times during development: fetal Leydig cells, which are active during fetal life, and adult Leydig cells, which are functional postnatally. Historically, our ability to understand the origin and function of Leydig cells has been made difficult by the lack of genetic models to exclusively target these cells. Taking advantage of the Leydig cell-exclusive expression pattern of the Insl3 gene, we used a CRISPR/Cas9 gene-editing strategy to knock-in iCre recombinase into the mouse Insl3 locus. To demonstrate the Leydig cell-exclusive nature of our iCre line, lineage-tracing experiments were performed by crossing Insl3iCre mice with a Rosa26LoxSTOPLox-TdTomato reporter. iCre activity was restricted to male offspring. TdTomato fluorescence was detected both in fetal and adult Leydig cells and colocalized with CYP17A1, a classic Leydig cell marker. Prior to birth, fluorescence was observed in fetal Leydig cells beginning at embryonic day 13.0. Fluorescence was also detected in adult Leydig cells starting at postnatal day 5 and continuing to the mature testis. Fluorescence was not detected in any other fetal or adult tissue examined, except for the unexpected finding that the adrenal cortex contains some Insl3-expressing Leydig-like cells. Our Leydig cell-exclusive iCre line therefore constitutes an invaluable new tool to study not only the origin of Leydig cells but also to target genes that have been long-proposed to be important for the development and functioning of these critical endocrine cells.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Leydig Cell-Exclusive Cre Line Allows Lineage Tracing of Fetal and Adult Leydig Cell Populations in the Mouse.\",\"authors\":\"Nicholas M Robert, Shirley Ferrier-Tarin, Jacques J Tremblay\",\"doi\":\"10.1210/endocr/bqaf012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leydig cells produce hormones that are required for male development, fertility, and health. Two Leydig cell populations produce these hormones but at different times during development: fetal Leydig cells, which are active during fetal life, and adult Leydig cells, which are functional postnatally. Historically, our ability to understand the origin and function of Leydig cells has been made difficult by the lack of genetic models to exclusively target these cells. Taking advantage of the Leydig cell-exclusive expression pattern of the Insl3 gene, we used a CRISPR/Cas9 gene-editing strategy to knock-in iCre recombinase into the mouse Insl3 locus. To demonstrate the Leydig cell-exclusive nature of our iCre line, lineage-tracing experiments were performed by crossing Insl3iCre mice with a Rosa26LoxSTOPLox-TdTomato reporter. iCre activity was restricted to male offspring. TdTomato fluorescence was detected both in fetal and adult Leydig cells and colocalized with CYP17A1, a classic Leydig cell marker. Prior to birth, fluorescence was observed in fetal Leydig cells beginning at embryonic day 13.0. Fluorescence was also detected in adult Leydig cells starting at postnatal day 5 and continuing to the mature testis. Fluorescence was not detected in any other fetal or adult tissue examined, except for the unexpected finding that the adrenal cortex contains some Insl3-expressing Leydig-like cells. Our Leydig cell-exclusive iCre line therefore constitutes an invaluable new tool to study not only the origin of Leydig cells but also to target genes that have been long-proposed to be important for the development and functioning of these critical endocrine cells.</p>\",\"PeriodicalId\":11819,\"journal\":{\"name\":\"Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/endocr/bqaf012\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf012","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

间质细胞产生男性发育、生育和健康所必需的激素。两种间质细胞群在发育过程中产生这些激素,但时间不同:胎儿间质细胞在胎儿时期活跃,成年间质细胞在出生后具有功能。从历史上看,由于缺乏专门针对这些细胞的遗传模型,我们理解间质细胞的起源和功能的能力变得困难。利用Insl3基因的间质细胞特异性表达模式,我们使用CRISPR/Cas9基因编辑策略将iCre重组酶敲入小鼠Insl3位点。为了证明我们的iCre系的间质细胞排他性,通过将Insl3iCre小鼠与rosa26loxstopplox - tdtomato报告基因杂交进行了谱系追踪实验。iCre活动仅限于雄性后代。TdTomato荧光可在胎儿和成人间质细胞中检测到,并与典型的间质细胞标志物CYP17A1共定位。在出生前,胚胎13.0天开始在胚胎间质细胞中观察到荧光。在出生后第5天开始的成年睾丸间质细胞中也检测到荧光,并持续到成熟睾丸。除了意外发现肾上腺皮质含有一些表达insl3的leydig样细胞外,在其他任何胎儿或成人组织中均未检测到荧光。因此,我们的间质细胞独家iCre系构成了一个宝贵的新工具,不仅可以研究间质细胞的起源,还可以研究长期以来被认为对这些关键内分泌细胞的发育和功能很重要的靶向基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Leydig Cell-Exclusive Cre Line Allows Lineage Tracing of Fetal and Adult Leydig Cell Populations in the Mouse.

Leydig cells produce hormones that are required for male development, fertility, and health. Two Leydig cell populations produce these hormones but at different times during development: fetal Leydig cells, which are active during fetal life, and adult Leydig cells, which are functional postnatally. Historically, our ability to understand the origin and function of Leydig cells has been made difficult by the lack of genetic models to exclusively target these cells. Taking advantage of the Leydig cell-exclusive expression pattern of the Insl3 gene, we used a CRISPR/Cas9 gene-editing strategy to knock-in iCre recombinase into the mouse Insl3 locus. To demonstrate the Leydig cell-exclusive nature of our iCre line, lineage-tracing experiments were performed by crossing Insl3iCre mice with a Rosa26LoxSTOPLox-TdTomato reporter. iCre activity was restricted to male offspring. TdTomato fluorescence was detected both in fetal and adult Leydig cells and colocalized with CYP17A1, a classic Leydig cell marker. Prior to birth, fluorescence was observed in fetal Leydig cells beginning at embryonic day 13.0. Fluorescence was also detected in adult Leydig cells starting at postnatal day 5 and continuing to the mature testis. Fluorescence was not detected in any other fetal or adult tissue examined, except for the unexpected finding that the adrenal cortex contains some Insl3-expressing Leydig-like cells. Our Leydig cell-exclusive iCre line therefore constitutes an invaluable new tool to study not only the origin of Leydig cells but also to target genes that have been long-proposed to be important for the development and functioning of these critical endocrine cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Endocrinology
Endocrinology 医学-内分泌学与代谢
CiteScore
8.10
自引率
4.20%
发文量
195
审稿时长
2-3 weeks
期刊介绍: The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.
期刊最新文献
Mechanisms of Low Temperature-Induced Growth Hormone Resistance via TRPA1 Channel Activation in Male Nile Tilapia. Estrogen receptor signaling alters sperm DNA methylation landscape in adult male rats. Glutamatergic Input from Arcuate Nucleus Kiss1 Neurons to Preoptic Kiss1 Neurons is Required for LH Surge in Female Mice. Maternal exposure to ozone during implantation promotes a feminized transcriptomic profile in the male adolescent liver. Interaction of B0AT1 deficiency and diet on metabolic function and diabetes incidence in male NOD mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1