改进TOF-PET的BGO时间分辨率:使用和不使用深度学习的比较分析。

IF 3 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING EJNMMI Physics Pub Date : 2025-01-17 DOI:10.1186/s40658-024-00711-6
Francis Loignon-Houle, Nicolaus Kratochwil, Maxime Toussaint, Carsten Lowis, Gerard Ariño-Estrada, Antonio J Gonzalez, Etiennette Auffray, Roger Lecomte
{"title":"改进TOF-PET的BGO时间分辨率:使用和不使用深度学习的比较分析。","authors":"Francis Loignon-Houle, Nicolaus Kratochwil, Maxime Toussaint, Carsten Lowis, Gerard Ariño-Estrada, Antonio J Gonzalez, Etiennette Auffray, Roger Lecomte","doi":"10.1186/s40658-024-00711-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The renewed interest in BGO scintillators for TOF-PET is driven by the improved Cherenkov photon detection with new blue-sensitive SiPMs. However, the slower scintillation light from BGO causes significant time walk with leading edge discrimination (LED), which degrades the coincidence time resolution (CTR). To address this, a time walk correction (TWC) can be done by using the rise time measured with a second threshold. Deep learning, particularly convolutional neural networks (CNNs), can also enhance CTR by training with digitized waveforms. It remains to be explored how timing estimation methods utilizing one (LED), two (TWC), or multiple (CNN) waveform data points compare in CTR performance of BGO scintillators.</p><p><strong>Results: </strong>In this work, we compare classical experimental timing estimation methods (LED, TWC) with a CNN-based method using the signals from BGO crystals read out by NUV-HD-MT SiPMs and high-frequency electronics. For <math> <mrow><mrow><mn>2</mn> <mo>×</mo> <mn>2</mn> <mo>×</mo> <mn>3</mn></mrow> <mspace></mspace> <msup><mtext>mm</mtext> <mn>3</mn></msup> </mrow> </math> crystals, implementing TWC results in a CTR of 129 ± 2 ps FWHM, while employing the CNN yields 115 ± 2 ps FWHM, marking improvements of 18 % and 26 %, respectively, relative to the standard LED estimator. For <math> <mrow><mrow><mn>2</mn> <mo>×</mo> <mn>2</mn> <mo>×</mo> <mn>20</mn></mrow> <mspace></mspace> <msup><mtext>mm</mtext> <mn>3</mn></msup> </mrow> </math> crystals, both methods yield similar CTR (around 240 ps FWHM), offering a <math><mo>∼</mo></math> 15 % gain over LED. The CNN, however, exhibits better tail suppression in the coincidence time distribution.</p><p><strong>Conclusions: </strong>The higher complexity of waveform digitization needed for CNNs could potentially be mitigated by adopting a simpler two-threshold approach, which appears to currently capture most of the essential information for improving CTR in longer BGO crystals. Other innovative deep learning models and training strategies may nonetheless contribute further in a near future to harnessing increasingly discernible timing features in TOF-PET detector signals.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"12 1","pages":"2"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739447/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving timing resolution of BGO for TOF-PET: a comparative analysis with and without deep learning.\",\"authors\":\"Francis Loignon-Houle, Nicolaus Kratochwil, Maxime Toussaint, Carsten Lowis, Gerard Ariño-Estrada, Antonio J Gonzalez, Etiennette Auffray, Roger Lecomte\",\"doi\":\"10.1186/s40658-024-00711-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The renewed interest in BGO scintillators for TOF-PET is driven by the improved Cherenkov photon detection with new blue-sensitive SiPMs. However, the slower scintillation light from BGO causes significant time walk with leading edge discrimination (LED), which degrades the coincidence time resolution (CTR). To address this, a time walk correction (TWC) can be done by using the rise time measured with a second threshold. Deep learning, particularly convolutional neural networks (CNNs), can also enhance CTR by training with digitized waveforms. It remains to be explored how timing estimation methods utilizing one (LED), two (TWC), or multiple (CNN) waveform data points compare in CTR performance of BGO scintillators.</p><p><strong>Results: </strong>In this work, we compare classical experimental timing estimation methods (LED, TWC) with a CNN-based method using the signals from BGO crystals read out by NUV-HD-MT SiPMs and high-frequency electronics. For <math> <mrow><mrow><mn>2</mn> <mo>×</mo> <mn>2</mn> <mo>×</mo> <mn>3</mn></mrow> <mspace></mspace> <msup><mtext>mm</mtext> <mn>3</mn></msup> </mrow> </math> crystals, implementing TWC results in a CTR of 129 ± 2 ps FWHM, while employing the CNN yields 115 ± 2 ps FWHM, marking improvements of 18 % and 26 %, respectively, relative to the standard LED estimator. For <math> <mrow><mrow><mn>2</mn> <mo>×</mo> <mn>2</mn> <mo>×</mo> <mn>20</mn></mrow> <mspace></mspace> <msup><mtext>mm</mtext> <mn>3</mn></msup> </mrow> </math> crystals, both methods yield similar CTR (around 240 ps FWHM), offering a <math><mo>∼</mo></math> 15 % gain over LED. The CNN, however, exhibits better tail suppression in the coincidence time distribution.</p><p><strong>Conclusions: </strong>The higher complexity of waveform digitization needed for CNNs could potentially be mitigated by adopting a simpler two-threshold approach, which appears to currently capture most of the essential information for improving CTR in longer BGO crystals. Other innovative deep learning models and training strategies may nonetheless contribute further in a near future to harnessing increasingly discernible timing features in TOF-PET detector signals.</p>\",\"PeriodicalId\":11559,\"journal\":{\"name\":\"EJNMMI Physics\",\"volume\":\"12 1\",\"pages\":\"2\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739447/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40658-024-00711-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00711-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:新型蓝敏SiPMs改进的切伦科夫光子探测技术推动了人们对TOF-PET用BGO闪烁体的重新关注。然而,由于BGO的闪烁光速度较慢,导致LED (leading edge discrimination)的时间行走明显,从而降低了符合时间分辨率(CTR)。为了解决这个问题,可以通过使用第二个阈值测量的上升时间来完成时间行走校正(TWC)。深度学习,特别是卷积神经网络(cnn),也可以通过使用数字化波形进行训练来提高点击率。利用一个(LED)、两个(TWC)或多个(CNN)波形数据点的定时估计方法如何比较BGO闪烁体的CTR性能还有待探讨。结果:在这项工作中,我们使用NUV-HD-MT SiPMs和高频电子读出的BGO晶体信号,将经典的实验定时估计方法(LED, TWC)与基于cnn的方法进行了比较。对于2 × 2 × 3mm3晶体,采用TWC的CTR为129±2 ps FWHM,而采用CNN的CTR为115±2 ps FWHM,与标准LED估计器相比,分别提高了18%和26%。对于2 × 2 × 20 mm 3晶体,两种方法产生相似的CTR(约240 ps FWHM),比LED提供约15%的增益。而CNN在符合时间分布上表现出较好的尾部抑制效果。结论:cnn所需的更高的波形数字化复杂性可以通过采用一种更简单的双阈值方法来缓解,该方法目前似乎可以捕获大部分用于提高长BGO晶体CTR的基本信息。尽管如此,在不久的将来,其他创新的深度学习模型和训练策略可能会进一步有助于利用TOF-PET探测器信号中日益明显的时序特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving timing resolution of BGO for TOF-PET: a comparative analysis with and without deep learning.

Background: The renewed interest in BGO scintillators for TOF-PET is driven by the improved Cherenkov photon detection with new blue-sensitive SiPMs. However, the slower scintillation light from BGO causes significant time walk with leading edge discrimination (LED), which degrades the coincidence time resolution (CTR). To address this, a time walk correction (TWC) can be done by using the rise time measured with a second threshold. Deep learning, particularly convolutional neural networks (CNNs), can also enhance CTR by training with digitized waveforms. It remains to be explored how timing estimation methods utilizing one (LED), two (TWC), or multiple (CNN) waveform data points compare in CTR performance of BGO scintillators.

Results: In this work, we compare classical experimental timing estimation methods (LED, TWC) with a CNN-based method using the signals from BGO crystals read out by NUV-HD-MT SiPMs and high-frequency electronics. For 2 × 2 × 3 mm 3 crystals, implementing TWC results in a CTR of 129 ± 2 ps FWHM, while employing the CNN yields 115 ± 2 ps FWHM, marking improvements of 18 % and 26 %, respectively, relative to the standard LED estimator. For 2 × 2 × 20 mm 3 crystals, both methods yield similar CTR (around 240 ps FWHM), offering a 15 % gain over LED. The CNN, however, exhibits better tail suppression in the coincidence time distribution.

Conclusions: The higher complexity of waveform digitization needed for CNNs could potentially be mitigated by adopting a simpler two-threshold approach, which appears to currently capture most of the essential information for improving CTR in longer BGO crystals. Other innovative deep learning models and training strategies may nonetheless contribute further in a near future to harnessing increasingly discernible timing features in TOF-PET detector signals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EJNMMI Physics
EJNMMI Physics Physics and Astronomy-Radiation
CiteScore
6.70
自引率
10.00%
发文量
78
审稿时长
13 weeks
期刊介绍: EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.
期刊最新文献
Correction: Radiopharmacokinetic modelling and radiation dose assessment of 223Ra used for treatment of metastatic castration-resistant prostate cancer. Exhalation of Rn-219 by patients treated with Radium-223. Quantitative accuracy of preclinical in ovo PET/MRI: influence of attenuation and quantification methods. AI-based automatic patient positioning in a digital-BGO PET/CT scanner: efficacy and impact. On the Effect of the Patient Table on Attenuation in Myocardial Perfusion Imaging SPECT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1