在急性青光眼小鼠模型中,TAT-N24通过抑制zbp1 - panoptosomes介导的PANoptosis来提高视网膜神经节细胞的存活。

IF 3 2区 医学 Q1 OPHTHALMOLOGY Experimental eye research Pub Date : 2025-01-18 DOI:10.1016/j.exer.2025.110244
Fei Li, Qiuxiang Zhang, Yan Rong, Sifei Xiang, Junming Wang
{"title":"在急性青光眼小鼠模型中,TAT-N24通过抑制zbp1 - panoptosomes介导的PANoptosis来提高视网膜神经节细胞的存活。","authors":"Fei Li, Qiuxiang Zhang, Yan Rong, Sifei Xiang, Junming Wang","doi":"10.1016/j.exer.2025.110244","DOIUrl":null,"url":null,"abstract":"<p><p>The abrupt and substantial elevation of intraocular pressure (IOP) in acute glaucoma induces retinal ischemia/reperfusion (I/R) injury, resulting in progressive retinal ganglion cell (RGC) death and irreversible visual impairment. PANoptosis, a form of regulated cell death consisting of pyroptosis, apoptosis and necroptosis, is reported to be involved in high IOP-induced RGC death. However, the precise mechanisms of RGC death remain unclear, and neuroinflammation is considered to play a vital role. TAT-N24, a synthetic inhibitor targeting the p55 regulatory subunit of phosphatidylinositol 3-kinase (p55PIK) signaling, demonstrates anti-inflammatory effect in uveitis and may have certain neuroprotective effects. Therefore, we investigated whether TAT-N24 could shield RGCs from immunoinflammatory damage in an acute glaucoma mouse model and explored the potential mechanism associated with PANoptosis. A mouse model of acute ocular hypertension (AOH) was established. Intravitreal injection of TAT-N24 was conducted to evaluate its impact on RGC death. The expression levels of key components in PANoptosis were analyzed using RT-qPCR and Western blotting. Immunohistochemistry and immunofluorescence staining on eyeball sections were employed to assess the expression of p55PIK, Brn3a, and ionized calcium binding adaptor molecule 1 (Iba1). Retinal structure was examined by H&E staining, while cell apoptosis was evaluated by TdT-mediated dUTP nick end labeling (TUNEL). The results showed that intravitreal injection of TAT-N24 effectively alleviated RGC death and retinal damage induced by AOH injury. The key components in PANoptosis were markedly upregulated after AOH injury, while these components were significantly inhibited after TAT-N24 treatment. Moreover, the expression levels of Z-DNA-binding protein 1 (ZBP1)-PANoptosome (ZBP1, RIPK1, RIPK3, and Caspase-8), NLR family pyrin domain-containing protein 3 (NLRP3), and NLR family CARD domain-containing protein 4 (NLRC4) inflammasomes were notably elevated after AOH injury, which was significantly suppressed by TAT-N24. In conclusion, PANoptosis was involved in AOH-induced RGC death and retinal damage. TAT-N24 exhibited an anti-PANoptotic effect, protecting RGCs by inhibiting ZBP1-PANoptosome as well as NLRP3 and NLRC4 inflammasomes after AOH injury.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110244"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TAT-N24 enhances retinal ganglion cell survival by suppressing ZBP1-PANoptosome-mediated PANoptosis in an acute glaucoma mouse model.\",\"authors\":\"Fei Li, Qiuxiang Zhang, Yan Rong, Sifei Xiang, Junming Wang\",\"doi\":\"10.1016/j.exer.2025.110244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The abrupt and substantial elevation of intraocular pressure (IOP) in acute glaucoma induces retinal ischemia/reperfusion (I/R) injury, resulting in progressive retinal ganglion cell (RGC) death and irreversible visual impairment. PANoptosis, a form of regulated cell death consisting of pyroptosis, apoptosis and necroptosis, is reported to be involved in high IOP-induced RGC death. However, the precise mechanisms of RGC death remain unclear, and neuroinflammation is considered to play a vital role. TAT-N24, a synthetic inhibitor targeting the p55 regulatory subunit of phosphatidylinositol 3-kinase (p55PIK) signaling, demonstrates anti-inflammatory effect in uveitis and may have certain neuroprotective effects. Therefore, we investigated whether TAT-N24 could shield RGCs from immunoinflammatory damage in an acute glaucoma mouse model and explored the potential mechanism associated with PANoptosis. A mouse model of acute ocular hypertension (AOH) was established. Intravitreal injection of TAT-N24 was conducted to evaluate its impact on RGC death. The expression levels of key components in PANoptosis were analyzed using RT-qPCR and Western blotting. Immunohistochemistry and immunofluorescence staining on eyeball sections were employed to assess the expression of p55PIK, Brn3a, and ionized calcium binding adaptor molecule 1 (Iba1). Retinal structure was examined by H&E staining, while cell apoptosis was evaluated by TdT-mediated dUTP nick end labeling (TUNEL). The results showed that intravitreal injection of TAT-N24 effectively alleviated RGC death and retinal damage induced by AOH injury. The key components in PANoptosis were markedly upregulated after AOH injury, while these components were significantly inhibited after TAT-N24 treatment. Moreover, the expression levels of Z-DNA-binding protein 1 (ZBP1)-PANoptosome (ZBP1, RIPK1, RIPK3, and Caspase-8), NLR family pyrin domain-containing protein 3 (NLRP3), and NLR family CARD domain-containing protein 4 (NLRC4) inflammasomes were notably elevated after AOH injury, which was significantly suppressed by TAT-N24. In conclusion, PANoptosis was involved in AOH-induced RGC death and retinal damage. TAT-N24 exhibited an anti-PANoptotic effect, protecting RGCs by inhibiting ZBP1-PANoptosome as well as NLRP3 and NLRC4 inflammasomes after AOH injury.</p>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\" \",\"pages\":\"110244\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.exer.2025.110244\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2025.110244","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

急性青光眼眼压(IOP)的突然和大幅升高引起视网膜缺血/再灌注(I/R)损伤,导致进行性视网膜神经节细胞(RGC)死亡和不可逆的视力损害。PANoptosis是一种由焦亡、凋亡和坏死死亡组成的受调控的细胞死亡形式,据报道与高iops诱导的RGC死亡有关。然而,RGC死亡的确切机制尚不清楚,神经炎症被认为起着至关重要的作用。TAT-N24是一种靶向磷脂酰肌醇3-激酶(p55PIK)信号p55调控亚基的合成抑制剂,在葡萄膜炎中具有抗炎作用,可能具有一定的神经保护作用。因此,我们在急性青光眼小鼠模型中研究TAT-N24是否可以保护RGCs免受免疫炎症损伤,并探讨其与PANoptosis相关的潜在机制。建立小鼠急性高眼压(AOH)模型。通过玻璃体内注射TAT-N24来评估其对RGC死亡的影响。采用RT-qPCR和Western blotting分析PANoptosis关键组分的表达水平。采用眼球切片免疫组织化学和免疫荧光染色评估p55PIK、Brn3a和离子钙结合受体分子1 (Iba1)的表达。H&E染色检测视网膜结构,tdt介导的dUTP缺口末端标记(TUNEL)检测细胞凋亡。结果表明,玻璃体内注射TAT-N24可有效减轻AOH损伤所致RGC死亡和视网膜损伤。AOH损伤后PANoptosis的关键成分明显上调,而TAT-N24处理后这些成分被显著抑制。此外,AOH损伤后,z - dna结合蛋白1 (ZBP1)-PANoptosome (ZBP1、RIPK1、RIPK3、Caspase-8)、NLR家族含pyrin结构域蛋白3 (NLRP3)、NLR家族含CARD结构域蛋白4 (NLRC4)炎症小体的表达水平显著升高,而TAT-N24可显著抑制这种表达。结论:PANoptosis参与了aoh诱导的RGC死亡和视网膜损伤。TAT-N24在AOH损伤后表现出抗panoptosome的作用,通过抑制ZBP1-PANoptosome以及NLRP3和NLRC4炎症小体来保护rgc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TAT-N24 enhances retinal ganglion cell survival by suppressing ZBP1-PANoptosome-mediated PANoptosis in an acute glaucoma mouse model.

The abrupt and substantial elevation of intraocular pressure (IOP) in acute glaucoma induces retinal ischemia/reperfusion (I/R) injury, resulting in progressive retinal ganglion cell (RGC) death and irreversible visual impairment. PANoptosis, a form of regulated cell death consisting of pyroptosis, apoptosis and necroptosis, is reported to be involved in high IOP-induced RGC death. However, the precise mechanisms of RGC death remain unclear, and neuroinflammation is considered to play a vital role. TAT-N24, a synthetic inhibitor targeting the p55 regulatory subunit of phosphatidylinositol 3-kinase (p55PIK) signaling, demonstrates anti-inflammatory effect in uveitis and may have certain neuroprotective effects. Therefore, we investigated whether TAT-N24 could shield RGCs from immunoinflammatory damage in an acute glaucoma mouse model and explored the potential mechanism associated with PANoptosis. A mouse model of acute ocular hypertension (AOH) was established. Intravitreal injection of TAT-N24 was conducted to evaluate its impact on RGC death. The expression levels of key components in PANoptosis were analyzed using RT-qPCR and Western blotting. Immunohistochemistry and immunofluorescence staining on eyeball sections were employed to assess the expression of p55PIK, Brn3a, and ionized calcium binding adaptor molecule 1 (Iba1). Retinal structure was examined by H&E staining, while cell apoptosis was evaluated by TdT-mediated dUTP nick end labeling (TUNEL). The results showed that intravitreal injection of TAT-N24 effectively alleviated RGC death and retinal damage induced by AOH injury. The key components in PANoptosis were markedly upregulated after AOH injury, while these components were significantly inhibited after TAT-N24 treatment. Moreover, the expression levels of Z-DNA-binding protein 1 (ZBP1)-PANoptosome (ZBP1, RIPK1, RIPK3, and Caspase-8), NLR family pyrin domain-containing protein 3 (NLRP3), and NLR family CARD domain-containing protein 4 (NLRC4) inflammasomes were notably elevated after AOH injury, which was significantly suppressed by TAT-N24. In conclusion, PANoptosis was involved in AOH-induced RGC death and retinal damage. TAT-N24 exhibited an anti-PANoptotic effect, protecting RGCs by inhibiting ZBP1-PANoptosome as well as NLRP3 and NLRC4 inflammasomes after AOH injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental eye research
Experimental eye research 医学-眼科学
CiteScore
6.80
自引率
5.90%
发文量
323
审稿时长
66 days
期刊介绍: The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.
期刊最新文献
Priming and release of cytokine IL-1β in microglial cells from the retina. Screening of Retinal-targeting Adeno-Associated Virus (AAV) via DNA shuffling. TAT-N24 enhances retinal ganglion cell survival by suppressing ZBP1-PANoptosome-mediated PANoptosis in an acute glaucoma mouse model. A combined experimental-computational approach for retinal characterization. Pharmacological depletion of pericytes induces diabetic retinopathy-like abnormal blood vessels in neonatal rat retina.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1