Fei Li, Qiuxiang Zhang, Yan Rong, Sifei Xiang, Junming Wang
{"title":"在急性青光眼小鼠模型中,TAT-N24通过抑制zbp1 - panoptosomes介导的PANoptosis来提高视网膜神经节细胞的存活。","authors":"Fei Li, Qiuxiang Zhang, Yan Rong, Sifei Xiang, Junming Wang","doi":"10.1016/j.exer.2025.110244","DOIUrl":null,"url":null,"abstract":"<p><p>The abrupt and substantial elevation of intraocular pressure (IOP) in acute glaucoma induces retinal ischemia/reperfusion (I/R) injury, resulting in progressive retinal ganglion cell (RGC) death and irreversible visual impairment. PANoptosis, a form of regulated cell death consisting of pyroptosis, apoptosis and necroptosis, is reported to be involved in high IOP-induced RGC death. However, the precise mechanisms of RGC death remain unclear, and neuroinflammation is considered to play a vital role. TAT-N24, a synthetic inhibitor targeting the p55 regulatory subunit of phosphatidylinositol 3-kinase (p55PIK) signaling, demonstrates anti-inflammatory effect in uveitis and may have certain neuroprotective effects. Therefore, we investigated whether TAT-N24 could shield RGCs from immunoinflammatory damage in an acute glaucoma mouse model and explored the potential mechanism associated with PANoptosis. A mouse model of acute ocular hypertension (AOH) was established. Intravitreal injection of TAT-N24 was conducted to evaluate its impact on RGC death. The expression levels of key components in PANoptosis were analyzed using RT-qPCR and Western blotting. Immunohistochemistry and immunofluorescence staining on eyeball sections were employed to assess the expression of p55PIK, Brn3a, and ionized calcium binding adaptor molecule 1 (Iba1). Retinal structure was examined by H&E staining, while cell apoptosis was evaluated by TdT-mediated dUTP nick end labeling (TUNEL). The results showed that intravitreal injection of TAT-N24 effectively alleviated RGC death and retinal damage induced by AOH injury. The key components in PANoptosis were markedly upregulated after AOH injury, while these components were significantly inhibited after TAT-N24 treatment. Moreover, the expression levels of Z-DNA-binding protein 1 (ZBP1)-PANoptosome (ZBP1, RIPK1, RIPK3, and Caspase-8), NLR family pyrin domain-containing protein 3 (NLRP3), and NLR family CARD domain-containing protein 4 (NLRC4) inflammasomes were notably elevated after AOH injury, which was significantly suppressed by TAT-N24. In conclusion, PANoptosis was involved in AOH-induced RGC death and retinal damage. TAT-N24 exhibited an anti-PANoptotic effect, protecting RGCs by inhibiting ZBP1-PANoptosome as well as NLRP3 and NLRC4 inflammasomes after AOH injury.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110244"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TAT-N24 enhances retinal ganglion cell survival by suppressing ZBP1-PANoptosome-mediated PANoptosis in an acute glaucoma mouse model.\",\"authors\":\"Fei Li, Qiuxiang Zhang, Yan Rong, Sifei Xiang, Junming Wang\",\"doi\":\"10.1016/j.exer.2025.110244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The abrupt and substantial elevation of intraocular pressure (IOP) in acute glaucoma induces retinal ischemia/reperfusion (I/R) injury, resulting in progressive retinal ganglion cell (RGC) death and irreversible visual impairment. PANoptosis, a form of regulated cell death consisting of pyroptosis, apoptosis and necroptosis, is reported to be involved in high IOP-induced RGC death. However, the precise mechanisms of RGC death remain unclear, and neuroinflammation is considered to play a vital role. TAT-N24, a synthetic inhibitor targeting the p55 regulatory subunit of phosphatidylinositol 3-kinase (p55PIK) signaling, demonstrates anti-inflammatory effect in uveitis and may have certain neuroprotective effects. Therefore, we investigated whether TAT-N24 could shield RGCs from immunoinflammatory damage in an acute glaucoma mouse model and explored the potential mechanism associated with PANoptosis. A mouse model of acute ocular hypertension (AOH) was established. Intravitreal injection of TAT-N24 was conducted to evaluate its impact on RGC death. The expression levels of key components in PANoptosis were analyzed using RT-qPCR and Western blotting. Immunohistochemistry and immunofluorescence staining on eyeball sections were employed to assess the expression of p55PIK, Brn3a, and ionized calcium binding adaptor molecule 1 (Iba1). Retinal structure was examined by H&E staining, while cell apoptosis was evaluated by TdT-mediated dUTP nick end labeling (TUNEL). The results showed that intravitreal injection of TAT-N24 effectively alleviated RGC death and retinal damage induced by AOH injury. The key components in PANoptosis were markedly upregulated after AOH injury, while these components were significantly inhibited after TAT-N24 treatment. Moreover, the expression levels of Z-DNA-binding protein 1 (ZBP1)-PANoptosome (ZBP1, RIPK1, RIPK3, and Caspase-8), NLR family pyrin domain-containing protein 3 (NLRP3), and NLR family CARD domain-containing protein 4 (NLRC4) inflammasomes were notably elevated after AOH injury, which was significantly suppressed by TAT-N24. In conclusion, PANoptosis was involved in AOH-induced RGC death and retinal damage. TAT-N24 exhibited an anti-PANoptotic effect, protecting RGCs by inhibiting ZBP1-PANoptosome as well as NLRP3 and NLRC4 inflammasomes after AOH injury.</p>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\" \",\"pages\":\"110244\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.exer.2025.110244\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2025.110244","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
TAT-N24 enhances retinal ganglion cell survival by suppressing ZBP1-PANoptosome-mediated PANoptosis in an acute glaucoma mouse model.
The abrupt and substantial elevation of intraocular pressure (IOP) in acute glaucoma induces retinal ischemia/reperfusion (I/R) injury, resulting in progressive retinal ganglion cell (RGC) death and irreversible visual impairment. PANoptosis, a form of regulated cell death consisting of pyroptosis, apoptosis and necroptosis, is reported to be involved in high IOP-induced RGC death. However, the precise mechanisms of RGC death remain unclear, and neuroinflammation is considered to play a vital role. TAT-N24, a synthetic inhibitor targeting the p55 regulatory subunit of phosphatidylinositol 3-kinase (p55PIK) signaling, demonstrates anti-inflammatory effect in uveitis and may have certain neuroprotective effects. Therefore, we investigated whether TAT-N24 could shield RGCs from immunoinflammatory damage in an acute glaucoma mouse model and explored the potential mechanism associated with PANoptosis. A mouse model of acute ocular hypertension (AOH) was established. Intravitreal injection of TAT-N24 was conducted to evaluate its impact on RGC death. The expression levels of key components in PANoptosis were analyzed using RT-qPCR and Western blotting. Immunohistochemistry and immunofluorescence staining on eyeball sections were employed to assess the expression of p55PIK, Brn3a, and ionized calcium binding adaptor molecule 1 (Iba1). Retinal structure was examined by H&E staining, while cell apoptosis was evaluated by TdT-mediated dUTP nick end labeling (TUNEL). The results showed that intravitreal injection of TAT-N24 effectively alleviated RGC death and retinal damage induced by AOH injury. The key components in PANoptosis were markedly upregulated after AOH injury, while these components were significantly inhibited after TAT-N24 treatment. Moreover, the expression levels of Z-DNA-binding protein 1 (ZBP1)-PANoptosome (ZBP1, RIPK1, RIPK3, and Caspase-8), NLR family pyrin domain-containing protein 3 (NLRP3), and NLR family CARD domain-containing protein 4 (NLRC4) inflammasomes were notably elevated after AOH injury, which was significantly suppressed by TAT-N24. In conclusion, PANoptosis was involved in AOH-induced RGC death and retinal damage. TAT-N24 exhibited an anti-PANoptotic effect, protecting RGCs by inhibiting ZBP1-PANoptosome as well as NLRP3 and NLRC4 inflammasomes after AOH injury.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.