{"title":"线粒体靶向药物二氯乙酸通过PDK/PDH轴和Akt/Nrf2途径保护硫芥菜诱导的神经毒性。","authors":"Shanshan Zhang, Yin Gong, Jinfeng Cen, Zhipeng Pei, Anying Wei, Zimeng Luo, Xuan Zhao, Guanchao Mao, Xinkang Zhang, Qingqiang Xu, Mingxue Sun, Wen-Qi Meng","doi":"10.1016/j.freeradbiomed.2025.01.023","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfur mustard (SM) is a major toxic chemical threat to public health. Mitochondrial dysfunction is considered a critical contributing factor to mustard agent-induced damage. The brain is vulnerable to SM, which can lead to various types of acute and long-term psychiatric distress after exposure, but the neurotoxic mechanisms of SM, let alone drug candidates for antidotes, are seldom studied. In this study, we employed a library of mitochondrion-targeted compounds to screen for antidotes for SM-induced neurotoxicity. Our data revealed that dichloroacetate (DCA) noticeably reduced neuronal death and helped maintain the normal morphology and function of mitochondria both in vitro and in vivo. Further experiments revealed that DCA protected neurons by inhibiting pyruvate dehydrogenase kinase (PDK), thus upregulating pyruvate dehydrogenase (PDH) and activating the protein kinase B (Akt)/Nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. Overall, our results indicated that DCA could protect against SM-induced neurotoxicity through the PDK/PDH axis and the Akt/Nrf2 pathway, suggesting that DCA is a potentially novel antidote for SM poisoning.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":"154-167"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dichloroacetate protects against sulfur mustard-induced neurotoxicity via the PDK/PDH axis and Akt/Nrf2 pathway.\",\"authors\":\"Shanshan Zhang, Yin Gong, Jinfeng Cen, Zhipeng Pei, Anying Wei, Zimeng Luo, Xuan Zhao, Guanchao Mao, Xinkang Zhang, Qingqiang Xu, Mingxue Sun, Wen-Qi Meng\",\"doi\":\"10.1016/j.freeradbiomed.2025.01.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sulfur mustard (SM) is a major toxic chemical threat to public health. Mitochondrial dysfunction is considered a critical contributing factor to mustard agent-induced damage. The brain is vulnerable to SM, which can lead to various types of acute and long-term psychiatric distress after exposure, but the neurotoxic mechanisms of SM, let alone drug candidates for antidotes, are seldom studied. In this study, we employed a library of mitochondrion-targeted compounds to screen for antidotes for SM-induced neurotoxicity. Our data revealed that dichloroacetate (DCA) noticeably reduced neuronal death and helped maintain the normal morphology and function of mitochondria both in vitro and in vivo. Further experiments revealed that DCA protected neurons by inhibiting pyruvate dehydrogenase kinase (PDK), thus upregulating pyruvate dehydrogenase (PDH) and activating the protein kinase B (Akt)/Nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. Overall, our results indicated that DCA could protect against SM-induced neurotoxicity through the PDK/PDH axis and the Akt/Nrf2 pathway, suggesting that DCA is a potentially novel antidote for SM poisoning.</p>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":\" \",\"pages\":\"154-167\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.freeradbiomed.2025.01.023\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2025.01.023","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Dichloroacetate protects against sulfur mustard-induced neurotoxicity via the PDK/PDH axis and Akt/Nrf2 pathway.
Sulfur mustard (SM) is a major toxic chemical threat to public health. Mitochondrial dysfunction is considered a critical contributing factor to mustard agent-induced damage. The brain is vulnerable to SM, which can lead to various types of acute and long-term psychiatric distress after exposure, but the neurotoxic mechanisms of SM, let alone drug candidates for antidotes, are seldom studied. In this study, we employed a library of mitochondrion-targeted compounds to screen for antidotes for SM-induced neurotoxicity. Our data revealed that dichloroacetate (DCA) noticeably reduced neuronal death and helped maintain the normal morphology and function of mitochondria both in vitro and in vivo. Further experiments revealed that DCA protected neurons by inhibiting pyruvate dehydrogenase kinase (PDK), thus upregulating pyruvate dehydrogenase (PDH) and activating the protein kinase B (Akt)/Nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. Overall, our results indicated that DCA could protect against SM-induced neurotoxicity through the PDK/PDH axis and the Akt/Nrf2 pathway, suggesting that DCA is a potentially novel antidote for SM poisoning.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.