Merestinib通过靶向NRF2抑制cuprotosis减轻急性肝损伤。

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Biology and Medicine Pub Date : 2025-01-15 DOI:10.1016/j.freeradbiomed.2025.01.029
Xianyu Luo, Maoyuan Linghu, Xinru Zhou, Yi Ru, Qian Huang, Didi Liu, Shurong Ji, Yinchu Ma, Yingli Luo, Yi Huang
{"title":"Merestinib通过靶向NRF2抑制cuprotosis减轻急性肝损伤。","authors":"Xianyu Luo, Maoyuan Linghu, Xinru Zhou, Yi Ru, Qian Huang, Didi Liu, Shurong Ji, Yinchu Ma, Yingli Luo, Yi Huang","doi":"10.1016/j.freeradbiomed.2025.01.029","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of cuproptosis, a novel form of regulated cell death, is induced by an excess of copper ions and has been associated with the progression of multiple diseases, including liver injury, cardiovascular disease, and neurodegenerative disorders. However, there are currently no inhibitors available for targeting specific cuproptosis-related pathways in therapy. Here, the compound merestinib (MTB) has been identified as a strong inhibitor of cuproptosis through screening of a kinase inhibitor library. The results show that MTB effectively blocks elesclomol-CuCl<sub>2</sub> (ES-Cu) induced cuproptosis by preventing the aggregation of lipoylated proteins and the destabilization of Fe-S cluster proteins, thereby preventing proteotoxic stress and ultimately cell death. Mechanistically, MTB decreases oxidative stress levels by binding directly to NRF2. Additionally, it boosts the efficiency of the copper homeostasis and facilitates the exocytosis and transportation of copper ions, ultimately inhibiting cuproptosis. Furthermore, our research showed that MTB has the ability to alleviate cuproptosis-driven acute liver injury in mice. These findings suggest that MTB is a specific inhibitor of cuproptosis, presenting a hopeful option for therapeutic approaches in cuproptosis-related diseases.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"229 ","pages":"68-81"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Merestinib inhibits cuproptosis by targeting NRF2 to alleviate acute liver injury.\",\"authors\":\"Xianyu Luo, Maoyuan Linghu, Xinru Zhou, Yi Ru, Qian Huang, Didi Liu, Shurong Ji, Yinchu Ma, Yingli Luo, Yi Huang\",\"doi\":\"10.1016/j.freeradbiomed.2025.01.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of cuproptosis, a novel form of regulated cell death, is induced by an excess of copper ions and has been associated with the progression of multiple diseases, including liver injury, cardiovascular disease, and neurodegenerative disorders. However, there are currently no inhibitors available for targeting specific cuproptosis-related pathways in therapy. Here, the compound merestinib (MTB) has been identified as a strong inhibitor of cuproptosis through screening of a kinase inhibitor library. The results show that MTB effectively blocks elesclomol-CuCl<sub>2</sub> (ES-Cu) induced cuproptosis by preventing the aggregation of lipoylated proteins and the destabilization of Fe-S cluster proteins, thereby preventing proteotoxic stress and ultimately cell death. Mechanistically, MTB decreases oxidative stress levels by binding directly to NRF2. Additionally, it boosts the efficiency of the copper homeostasis and facilitates the exocytosis and transportation of copper ions, ultimately inhibiting cuproptosis. Furthermore, our research showed that MTB has the ability to alleviate cuproptosis-driven acute liver injury in mice. These findings suggest that MTB is a specific inhibitor of cuproptosis, presenting a hopeful option for therapeutic approaches in cuproptosis-related diseases.</p>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":\"229 \",\"pages\":\"68-81\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.freeradbiomed.2025.01.029\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2025.01.029","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铜增生是一种新型的受调控细胞死亡形式,是由过量的铜离子诱导的,并与多种疾病的进展有关,包括肝损伤、心血管疾病和神经退行性疾病。然而,目前还没有抑制剂可用于治疗特定的铜裂相关途径。在这里,化合物merestinib (MTB)通过筛选激酶抑制剂文库被确定为一种强铜proprosis抑制剂。结果表明,MTB通过阻止脂酰化蛋白的聚集和Fe-S簇蛋白的不稳定,有效阻断elesclomol-CuCl2 (ES-Cu)诱导的铜化,从而防止蛋白质毒性应激并最终导致细胞死亡。从机制上讲,MTB通过直接结合NRF2降低氧化应激水平。此外,它还能提高铜稳态的效率,促进铜离子的胞吐和运输,最终抑制铜还原。此外,我们的研究表明MTB具有减轻铜中毒引起的小鼠急性肝损伤的能力。这些研究结果表明MTB是铜倾的特异性抑制剂,为铜倾相关疾病的治疗方法提供了一个有希望的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Merestinib inhibits cuproptosis by targeting NRF2 to alleviate acute liver injury.

The emergence of cuproptosis, a novel form of regulated cell death, is induced by an excess of copper ions and has been associated with the progression of multiple diseases, including liver injury, cardiovascular disease, and neurodegenerative disorders. However, there are currently no inhibitors available for targeting specific cuproptosis-related pathways in therapy. Here, the compound merestinib (MTB) has been identified as a strong inhibitor of cuproptosis through screening of a kinase inhibitor library. The results show that MTB effectively blocks elesclomol-CuCl2 (ES-Cu) induced cuproptosis by preventing the aggregation of lipoylated proteins and the destabilization of Fe-S cluster proteins, thereby preventing proteotoxic stress and ultimately cell death. Mechanistically, MTB decreases oxidative stress levels by binding directly to NRF2. Additionally, it boosts the efficiency of the copper homeostasis and facilitates the exocytosis and transportation of copper ions, ultimately inhibiting cuproptosis. Furthermore, our research showed that MTB has the ability to alleviate cuproptosis-driven acute liver injury in mice. These findings suggest that MTB is a specific inhibitor of cuproptosis, presenting a hopeful option for therapeutic approaches in cuproptosis-related diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
期刊最新文献
The race within a race: Together on the marathon starting line but miles apart in the experience. Pink1-dependent mitophagy in vascular smooth muscle cells: Implications for arterial constriction. Altered mitochondrial unfolded protein response and protein quality control promote oxidative distress in down syndrome brain. The RNA chaperone Hfq is a novel regulator of catalase expression and hydrogen peroxide-induced oxidative stress response in Listeria monocytogenes EGD-e. NRF2 activation by 6-MSITC increases the generation of neuroprotective, soluble α amyloid precursor protein by inducing the metalloprotease gene ADAM17.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1