Moustafa Salaheldin Abdelhamid, Salwa Samy Abdelfattah Eraky, Ibrahim Mohey El-Deen, Mohamed Ahmed Elian Sophy
{"title":"新型噻唑酮类衍生物作为α-葡萄糖苷酶/α-淀粉酶双抑制剂、抗炎剂的生化评价。","authors":"Moustafa Salaheldin Abdelhamid, Salwa Samy Abdelfattah Eraky, Ibrahim Mohey El-Deen, Mohamed Ahmed Elian Sophy","doi":"10.1080/17568919.2024.2447225","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Using an analogue-based drug design approach, a number of novel 2-substituted-1,3-thiazolone derivatives (3-10) have been produced and given permission to proceed for their anti-inflammatory properties. In the present paper, the new thiazole derivatives were designed, synthesized, and tested for their alpha-glucosidase, alpha-amylase, and COX-inhibitory activities. Approving the anti-diabetic activity.</p><p><strong>Results: </strong>All the new derivatives were assessed in vitro compared to control (Acarbose) alpha-glucosidase, and alpha-amylase inhibition influence was showed shown through (3, 5, and 7) that were the most effective compounds as α-glucosidase inhibitors.</p><p><strong>Conclusions: </strong>Compounds (4 and 7) achieved the best effect as α-amylase inhibitors showed by IC<sub>50</sub> score near to that of control (Acarbose). Meanwhile, compound (4) exhibited a lower ferric-reducing anti-oxidant power (FRAP) value when compared to the control experiment (ascorbic acid). A molecular docking study approved the binding affinity and mode of binding of compounds (4 and 5) to the α-glucosidase and α-amylase binding pockets.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":"17 2","pages":"209-219"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749350/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biochemical evaluation of novel thiazolone derivatives as dual α-glucosidase/α-amylase inhibitors, anti-inflammatory agents.\",\"authors\":\"Moustafa Salaheldin Abdelhamid, Salwa Samy Abdelfattah Eraky, Ibrahim Mohey El-Deen, Mohamed Ahmed Elian Sophy\",\"doi\":\"10.1080/17568919.2024.2447225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Using an analogue-based drug design approach, a number of novel 2-substituted-1,3-thiazolone derivatives (3-10) have been produced and given permission to proceed for their anti-inflammatory properties. In the present paper, the new thiazole derivatives were designed, synthesized, and tested for their alpha-glucosidase, alpha-amylase, and COX-inhibitory activities. Approving the anti-diabetic activity.</p><p><strong>Results: </strong>All the new derivatives were assessed in vitro compared to control (Acarbose) alpha-glucosidase, and alpha-amylase inhibition influence was showed shown through (3, 5, and 7) that were the most effective compounds as α-glucosidase inhibitors.</p><p><strong>Conclusions: </strong>Compounds (4 and 7) achieved the best effect as α-amylase inhibitors showed by IC<sub>50</sub> score near to that of control (Acarbose). Meanwhile, compound (4) exhibited a lower ferric-reducing anti-oxidant power (FRAP) value when compared to the control experiment (ascorbic acid). A molecular docking study approved the binding affinity and mode of binding of compounds (4 and 5) to the α-glucosidase and α-amylase binding pockets.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\"17 2\",\"pages\":\"209-219\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749350/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2024.2447225\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2447225","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Biochemical evaluation of novel thiazolone derivatives as dual α-glucosidase/α-amylase inhibitors, anti-inflammatory agents.
Background: Using an analogue-based drug design approach, a number of novel 2-substituted-1,3-thiazolone derivatives (3-10) have been produced and given permission to proceed for their anti-inflammatory properties. In the present paper, the new thiazole derivatives were designed, synthesized, and tested for their alpha-glucosidase, alpha-amylase, and COX-inhibitory activities. Approving the anti-diabetic activity.
Results: All the new derivatives were assessed in vitro compared to control (Acarbose) alpha-glucosidase, and alpha-amylase inhibition influence was showed shown through (3, 5, and 7) that were the most effective compounds as α-glucosidase inhibitors.
Conclusions: Compounds (4 and 7) achieved the best effect as α-amylase inhibitors showed by IC50 score near to that of control (Acarbose). Meanwhile, compound (4) exhibited a lower ferric-reducing anti-oxidant power (FRAP) value when compared to the control experiment (ascorbic acid). A molecular docking study approved the binding affinity and mode of binding of compounds (4 and 5) to the α-glucosidase and α-amylase binding pockets.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.