Marwa Alsulaimany, Ahmed K B Aljohani, Nour E A Abd El-Sattar, Sara A Almadani, Omar M Alatawi, Hussam Y Alharbi, Majed S Aljohani, Adel H Al-Shareef, Read Alghamdi, Saeed M Tayeb, Doaa E Keshek, Khaled El-Adl, Kurls E Anwer
{"title":"双VEGFR-2和EGFRT790M苯二氮的抑制剂:抗癌评价,ADMET,对接,设计和合成。","authors":"Marwa Alsulaimany, Ahmed K B Aljohani, Nour E A Abd El-Sattar, Sara A Almadani, Omar M Alatawi, Hussam Y Alharbi, Majed S Aljohani, Adel H Al-Shareef, Read Alghamdi, Saeed M Tayeb, Doaa E Keshek, Khaled El-Adl, Kurls E Anwer","doi":"10.1080/17568919.2025.2453409","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>New phenyldiazene scaffold-linked heterocyclic pyrazole, pyrimidinone, pyrimidinthione, and/or triazine rings have been developed and synthesized.</p><p><strong>Methods & results: </strong>Cytotoxicity of our derivatives was estimated on four cancer and VERO normal cell lines targeting EGFR<sup>T790M</sup> (epidermal growth factor receptor) and VEGFR-2 (vascular endothelial growth factor receptor-2) enzymes. Our new derivatives selectively inhibited both VEGFR-2 and EGFR as they have the essential structural requirements for inhibitors of both receptors. Derivative <b>14</b> was the most active on A549, HCT116, HepG2, and MCF-7 cancers with half-maximal inhibitory concentration (IC<sub>50</sub>) = 5.50, 9.77, 7.12, and 7.85 µM respectively. The assessed derivatives <b>5</b>, <b>7</b>, <b>8, 9, 10, 12</b> and <b>14</b> showed IC<sub>50</sub> = 54.40-62.60 μM against normal VERO (normal kidney) cells with low toxicity. In addition, derivatives <b>14, 8, 10, 7</b> and <b>9</b> were discovered to be very good active inhibitors of VEGFR-2 at IC<sub>50</sub> values of 1.15, 1.35, 140, 1.78 and 1.90 µM, respectively. Furthermore, derivatives <b>14, 10, 8,</b> and <b>9</b> strongly repressed EGFR<sup>T790M</sup> with IC<sub>50</sub> = 0.28, 0.33, 0.35, and 0.50 µM correspondingly. Additionally, the highly active compounds <b>8, 10,</b> and <b>14</b> showed good ADMET profile.</p><p><strong>Conclusion: </strong>Our derivatives could be considered as anticancer agents with dual VEGFR-2 and EGFR<sup>T790M</sup> inhibition.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"287-300"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792794/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual VEGFR-2 and EGFR<sup>T790M</sup> inhibitors of phenyldiazenes: anticancer evaluations, ADMET, docking, design and synthesis.\",\"authors\":\"Marwa Alsulaimany, Ahmed K B Aljohani, Nour E A Abd El-Sattar, Sara A Almadani, Omar M Alatawi, Hussam Y Alharbi, Majed S Aljohani, Adel H Al-Shareef, Read Alghamdi, Saeed M Tayeb, Doaa E Keshek, Khaled El-Adl, Kurls E Anwer\",\"doi\":\"10.1080/17568919.2025.2453409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>New phenyldiazene scaffold-linked heterocyclic pyrazole, pyrimidinone, pyrimidinthione, and/or triazine rings have been developed and synthesized.</p><p><strong>Methods & results: </strong>Cytotoxicity of our derivatives was estimated on four cancer and VERO normal cell lines targeting EGFR<sup>T790M</sup> (epidermal growth factor receptor) and VEGFR-2 (vascular endothelial growth factor receptor-2) enzymes. Our new derivatives selectively inhibited both VEGFR-2 and EGFR as they have the essential structural requirements for inhibitors of both receptors. Derivative <b>14</b> was the most active on A549, HCT116, HepG2, and MCF-7 cancers with half-maximal inhibitory concentration (IC<sub>50</sub>) = 5.50, 9.77, 7.12, and 7.85 µM respectively. The assessed derivatives <b>5</b>, <b>7</b>, <b>8, 9, 10, 12</b> and <b>14</b> showed IC<sub>50</sub> = 54.40-62.60 μM against normal VERO (normal kidney) cells with low toxicity. In addition, derivatives <b>14, 8, 10, 7</b> and <b>9</b> were discovered to be very good active inhibitors of VEGFR-2 at IC<sub>50</sub> values of 1.15, 1.35, 140, 1.78 and 1.90 µM, respectively. Furthermore, derivatives <b>14, 10, 8,</b> and <b>9</b> strongly repressed EGFR<sup>T790M</sup> with IC<sub>50</sub> = 0.28, 0.33, 0.35, and 0.50 µM correspondingly. Additionally, the highly active compounds <b>8, 10,</b> and <b>14</b> showed good ADMET profile.</p><p><strong>Conclusion: </strong>Our derivatives could be considered as anticancer agents with dual VEGFR-2 and EGFR<sup>T790M</sup> inhibition.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"287-300\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792794/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2025.2453409\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2025.2453409","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Dual VEGFR-2 and EGFRT790M inhibitors of phenyldiazenes: anticancer evaluations, ADMET, docking, design and synthesis.
Aim: New phenyldiazene scaffold-linked heterocyclic pyrazole, pyrimidinone, pyrimidinthione, and/or triazine rings have been developed and synthesized.
Methods & results: Cytotoxicity of our derivatives was estimated on four cancer and VERO normal cell lines targeting EGFRT790M (epidermal growth factor receptor) and VEGFR-2 (vascular endothelial growth factor receptor-2) enzymes. Our new derivatives selectively inhibited both VEGFR-2 and EGFR as they have the essential structural requirements for inhibitors of both receptors. Derivative 14 was the most active on A549, HCT116, HepG2, and MCF-7 cancers with half-maximal inhibitory concentration (IC50) = 5.50, 9.77, 7.12, and 7.85 µM respectively. The assessed derivatives 5, 7, 8, 9, 10, 12 and 14 showed IC50 = 54.40-62.60 μM against normal VERO (normal kidney) cells with low toxicity. In addition, derivatives 14, 8, 10, 7 and 9 were discovered to be very good active inhibitors of VEGFR-2 at IC50 values of 1.15, 1.35, 140, 1.78 and 1.90 µM, respectively. Furthermore, derivatives 14, 10, 8, and 9 strongly repressed EGFRT790M with IC50 = 0.28, 0.33, 0.35, and 0.50 µM correspondingly. Additionally, the highly active compounds 8, 10, and 14 showed good ADMET profile.
Conclusion: Our derivatives could be considered as anticancer agents with dual VEGFR-2 and EGFRT790M inhibition.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.