{"title":"MRI与数字医学诊断:将深度学习融入腰椎退行性疾病的临床决策。","authors":"Baoyi Ke, Wenyu Ma, Junbo Xuan, Yinghao Liang, Liguang Zhou, Wenyong Jiang, Jing Lin, Guixiang Li","doi":"10.3389/fsurg.2024.1424716","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>To develop an intelligent system based on artificial intelligence (AI) deep learning algorithms using deep learning tools, aiming to assist in the diagnosis of lumbar degenerative diseases by identifying lumbar spine magnetic resonance images (MRI) and improve the clinical efficiency of physicians.</p><p><strong>Methods: </strong>The PP-YOLOv2 algorithm, a deep learning technique, was used to design a deep learning program capable of automatically identifying the spinal diseases (lumbar disc herniation or lumbar spondylolisthesis) based on the lumbar spine MR images. A retrospective analysis was conducted on lumbar spine MR images of patients who visited our hospital from January 2017 to January 2022. The collected images were divided into a training set and a testing set. The training set images were used to establish and validate the deep learning program's algorithm. The testing set images were annotated, and the experimental results were recorded by three spinal specialists. The training set images were also validated using the deep learning program, and the experimental results were recorded. Finally, a comparison of the accuracy of the deep learning algorithm and that of spinal surgeons was performed to determine the clinical usability of deep learning technology based on the PP-YOLOv2 algorithm. A total of 654 patients were included in the final study, with 604 cases in the training set and 50 cases in the testing set.</p><p><strong>Results: </strong>The mean average precision (mAP) value of the deep learning algorithm reached 90.08% based on the PP-YOLOv2 algorithm. Through classification of the testing set, the deep learning algorithm showed higher sensitivity, specificity, and accuracy in diagnosing lumbar spine MR images compared to manual identification. Additionally, the testing time of the deep learning program was significantly shorter than that of manual identification, and the differences were statistically significant (<i>P</i> < 0.05).</p><p><strong>Conclusions: </strong>Deep learning technology based on the PP-YOLOv2 algorithm can be used to identify normal intervertebral discs, lumbar disc herniation, and lumbar spondylolisthesis from lumbar MRI images. Its diagnostic performance is significantly higher than that of most spinal surgeons and can be practically applied in clinical settings.</p>","PeriodicalId":12564,"journal":{"name":"Frontiers in Surgery","volume":"11 ","pages":"1424716"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743461/pdf/","citationCount":"0","resultStr":"{\"title\":\"MRI to digital medicine diagnosis: integrating deep learning into clinical decision-making for lumbar degenerative diseases.\",\"authors\":\"Baoyi Ke, Wenyu Ma, Junbo Xuan, Yinghao Liang, Liguang Zhou, Wenyong Jiang, Jing Lin, Guixiang Li\",\"doi\":\"10.3389/fsurg.2024.1424716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>To develop an intelligent system based on artificial intelligence (AI) deep learning algorithms using deep learning tools, aiming to assist in the diagnosis of lumbar degenerative diseases by identifying lumbar spine magnetic resonance images (MRI) and improve the clinical efficiency of physicians.</p><p><strong>Methods: </strong>The PP-YOLOv2 algorithm, a deep learning technique, was used to design a deep learning program capable of automatically identifying the spinal diseases (lumbar disc herniation or lumbar spondylolisthesis) based on the lumbar spine MR images. A retrospective analysis was conducted on lumbar spine MR images of patients who visited our hospital from January 2017 to January 2022. The collected images were divided into a training set and a testing set. The training set images were used to establish and validate the deep learning program's algorithm. The testing set images were annotated, and the experimental results were recorded by three spinal specialists. The training set images were also validated using the deep learning program, and the experimental results were recorded. Finally, a comparison of the accuracy of the deep learning algorithm and that of spinal surgeons was performed to determine the clinical usability of deep learning technology based on the PP-YOLOv2 algorithm. A total of 654 patients were included in the final study, with 604 cases in the training set and 50 cases in the testing set.</p><p><strong>Results: </strong>The mean average precision (mAP) value of the deep learning algorithm reached 90.08% based on the PP-YOLOv2 algorithm. Through classification of the testing set, the deep learning algorithm showed higher sensitivity, specificity, and accuracy in diagnosing lumbar spine MR images compared to manual identification. Additionally, the testing time of the deep learning program was significantly shorter than that of manual identification, and the differences were statistically significant (<i>P</i> < 0.05).</p><p><strong>Conclusions: </strong>Deep learning technology based on the PP-YOLOv2 algorithm can be used to identify normal intervertebral discs, lumbar disc herniation, and lumbar spondylolisthesis from lumbar MRI images. Its diagnostic performance is significantly higher than that of most spinal surgeons and can be practically applied in clinical settings.</p>\",\"PeriodicalId\":12564,\"journal\":{\"name\":\"Frontiers in Surgery\",\"volume\":\"11 \",\"pages\":\"1424716\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743461/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fsurg.2024.1424716\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fsurg.2024.1424716","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
MRI to digital medicine diagnosis: integrating deep learning into clinical decision-making for lumbar degenerative diseases.
Introduction: To develop an intelligent system based on artificial intelligence (AI) deep learning algorithms using deep learning tools, aiming to assist in the diagnosis of lumbar degenerative diseases by identifying lumbar spine magnetic resonance images (MRI) and improve the clinical efficiency of physicians.
Methods: The PP-YOLOv2 algorithm, a deep learning technique, was used to design a deep learning program capable of automatically identifying the spinal diseases (lumbar disc herniation or lumbar spondylolisthesis) based on the lumbar spine MR images. A retrospective analysis was conducted on lumbar spine MR images of patients who visited our hospital from January 2017 to January 2022. The collected images were divided into a training set and a testing set. The training set images were used to establish and validate the deep learning program's algorithm. The testing set images were annotated, and the experimental results were recorded by three spinal specialists. The training set images were also validated using the deep learning program, and the experimental results were recorded. Finally, a comparison of the accuracy of the deep learning algorithm and that of spinal surgeons was performed to determine the clinical usability of deep learning technology based on the PP-YOLOv2 algorithm. A total of 654 patients were included in the final study, with 604 cases in the training set and 50 cases in the testing set.
Results: The mean average precision (mAP) value of the deep learning algorithm reached 90.08% based on the PP-YOLOv2 algorithm. Through classification of the testing set, the deep learning algorithm showed higher sensitivity, specificity, and accuracy in diagnosing lumbar spine MR images compared to manual identification. Additionally, the testing time of the deep learning program was significantly shorter than that of manual identification, and the differences were statistically significant (P < 0.05).
Conclusions: Deep learning technology based on the PP-YOLOv2 algorithm can be used to identify normal intervertebral discs, lumbar disc herniation, and lumbar spondylolisthesis from lumbar MRI images. Its diagnostic performance is significantly higher than that of most spinal surgeons and can be practically applied in clinical settings.
期刊介绍:
Evidence of surgical interventions go back to prehistoric times. Since then, the field of surgery has developed into a complex array of specialties and procedures, particularly with the advent of microsurgery, lasers and minimally invasive techniques. The advanced skills now required from surgeons has led to ever increasing specialization, though these still share important fundamental principles.
Frontiers in Surgery is the umbrella journal representing the publication interests of all surgical specialties. It is divided into several “Specialty Sections” listed below. All these sections have their own Specialty Chief Editor, Editorial Board and homepage, but all articles carry the citation Frontiers in Surgery.
Frontiers in Surgery calls upon medical professionals and scientists from all surgical specialties to publish their experimental and clinical studies in this journal. By assembling all surgical specialties, which nonetheless retain their independence, under the common umbrella of Frontiers in Surgery, a powerful publication venue is created. Since there is often overlap and common ground between the different surgical specialties, assembly of all surgical disciplines into a single journal will foster a collaborative dialogue amongst the surgical community. This means that publications, which are also of interest to other surgical specialties, will reach a wider audience and have greater impact.
The aim of this multidisciplinary journal is to create a discussion and knowledge platform of advances and research findings in surgical practice today to continuously improve clinical management of patients and foster innovation in this field.