Carolina Diaz Arenas, Maristella Alvarez, Robert H Wilson, Eugene I Shakhnovich, C Brandon Ogbunugafor
{"title":"蛋白质质量控制是细菌分子进化的主要调节器。","authors":"Carolina Diaz Arenas, Maristella Alvarez, Robert H Wilson, Eugene I Shakhnovich, C Brandon Ogbunugafor","doi":"10.1093/gbe/evaf010","DOIUrl":null,"url":null,"abstract":"<p><p>The bacterial protein quality control (PQC) network comprises a set of genes that promote proteostasis (proteome homeostasis) through proper protein folding and function via chaperones, proteases, and a protein translational machinery. It participates in vital cellular processes and influences organismal development and evolution. In this review, we examine the mechanistic bases for how the bacterial PQC network influences molecular evolution. We discuss the relevance of PQC components to contemporary issues in evolutionary biology including epistasis, evolvability, and the navigability of protein space. We examine other areas where proteostasis affects aspects of evolution and physiology, including host-parasite interactions. More generally, we demonstrate that the study of bacterial systems can aid in broader efforts to understand the relationship between genotype and phenotype across the biosphere.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein quality control is a master modulator of molecular evolution in bacteria.\",\"authors\":\"Carolina Diaz Arenas, Maristella Alvarez, Robert H Wilson, Eugene I Shakhnovich, C Brandon Ogbunugafor\",\"doi\":\"10.1093/gbe/evaf010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The bacterial protein quality control (PQC) network comprises a set of genes that promote proteostasis (proteome homeostasis) through proper protein folding and function via chaperones, proteases, and a protein translational machinery. It participates in vital cellular processes and influences organismal development and evolution. In this review, we examine the mechanistic bases for how the bacterial PQC network influences molecular evolution. We discuss the relevance of PQC components to contemporary issues in evolutionary biology including epistasis, evolvability, and the navigability of protein space. We examine other areas where proteostasis affects aspects of evolution and physiology, including host-parasite interactions. More generally, we demonstrate that the study of bacterial systems can aid in broader efforts to understand the relationship between genotype and phenotype across the biosphere.</p>\",\"PeriodicalId\":12779,\"journal\":{\"name\":\"Genome Biology and Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gbe/evaf010\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evaf010","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Protein quality control is a master modulator of molecular evolution in bacteria.
The bacterial protein quality control (PQC) network comprises a set of genes that promote proteostasis (proteome homeostasis) through proper protein folding and function via chaperones, proteases, and a protein translational machinery. It participates in vital cellular processes and influences organismal development and evolution. In this review, we examine the mechanistic bases for how the bacterial PQC network influences molecular evolution. We discuss the relevance of PQC components to contemporary issues in evolutionary biology including epistasis, evolvability, and the navigability of protein space. We examine other areas where proteostasis affects aspects of evolution and physiology, including host-parasite interactions. More generally, we demonstrate that the study of bacterial systems can aid in broader efforts to understand the relationship between genotype and phenotype across the biosphere.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.