Anton Lahusen, Nora Minhöfer, Kim-André Lohse, Christine Blechner, Jessica Lindenmayer, Tim Eiseler, Anton Wellstein, Alexander Kleger, Thomas Seufferlein, Sabine Windhorst, Yuan-Na Lin
{"title":"胰腺癌细胞内禀转谷氨酰胺酶-2通过微管依赖性分泌免疫抑制细胞因子促进T细胞抑制。","authors":"Anton Lahusen, Nora Minhöfer, Kim-André Lohse, Christine Blechner, Jessica Lindenmayer, Tim Eiseler, Anton Wellstein, Alexander Kleger, Thomas Seufferlein, Sabine Windhorst, Yuan-Na Lin","doi":"10.1136/jitc-2024-010579","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a \"cold\" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.</p><p><strong>Methods: </strong>We used an unbiased screening approach of T cell resistant and sensitive murine KPC (<i>Kras<sup>LSL-G12D/+</sup>; Trp53<sup>fl/fl</sup>; Ptf1a<sup>Cre/+</sup></i> ) PDAC cells in a three-dimensional co-culture platform with syngeneic antigen-educated T cells to identify potential cell-intrinsic drivers of T cell suppression in PDAC. Comparative transcriptomic analysis was performed to reveal promising candidates that mediate resistance to T cells. We investigated their contribution by shRNA-mediated knockdown and pharmacological inhibition in murine in vitro and in vivo studies, as well as in patient-derived organoids (PDOs). A combination of transcriptomic analyses, cytometric and immunohistochemistry techniques allowed us to validate the underlying T cell response phenotypes of PDAC cells. The action of TGM2 via interaction with tubulin and the impact of microtubule dynamics and vesicle trafficking were evaluated by protein analyses and live-cell imaging. Correlation analyses via TCGA data complemented the functional studies.</p><p><strong>Results: </strong>We identified transglutaminase 2 (TGM2) as a mediator of T cell suppression in PDAC. We report that high levels of TGM2 expression in patients' tumors correlate with immunosuppressive signatures and poor overall survival. We found that TGM2 regulates vesicle trafficking by modulating microtubule network density and dynamics in pancreatic cancer cells, thus facilitating the secretion of immunosuppressive cytokines, which impair effector T cell functionality. In TGM2-expressing PDOs, pharmacological TGM2 inhibition or treatment with nocodazole increased T cell-mediated apoptosis. Also, pretreatment of TGM2<sup>high</sup> PDOs with sublethal doses of the spindle poisons paclitaxel or vincristine increased CD8+T cell activation and sensitized PDOs toward T cell-mediated cytotoxicity.</p><p><strong>Conclusions: </strong>These findings indicate that targeting microtubular function therapeutically may enhance antitumor T cell responses by impacting activity of immunosuppressive cytokines in the PDAC microenvironment.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 1","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748943/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pancreatic cancer cell-intrinsic transglutaminase-2 promotes T cell suppression through microtubule-dependent secretion of immunosuppressive cytokines.\",\"authors\":\"Anton Lahusen, Nora Minhöfer, Kim-André Lohse, Christine Blechner, Jessica Lindenmayer, Tim Eiseler, Anton Wellstein, Alexander Kleger, Thomas Seufferlein, Sabine Windhorst, Yuan-Na Lin\",\"doi\":\"10.1136/jitc-2024-010579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a \\\"cold\\\" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.</p><p><strong>Methods: </strong>We used an unbiased screening approach of T cell resistant and sensitive murine KPC (<i>Kras<sup>LSL-G12D/+</sup>; Trp53<sup>fl/fl</sup>; Ptf1a<sup>Cre/+</sup></i> ) PDAC cells in a three-dimensional co-culture platform with syngeneic antigen-educated T cells to identify potential cell-intrinsic drivers of T cell suppression in PDAC. Comparative transcriptomic analysis was performed to reveal promising candidates that mediate resistance to T cells. We investigated their contribution by shRNA-mediated knockdown and pharmacological inhibition in murine in vitro and in vivo studies, as well as in patient-derived organoids (PDOs). A combination of transcriptomic analyses, cytometric and immunohistochemistry techniques allowed us to validate the underlying T cell response phenotypes of PDAC cells. The action of TGM2 via interaction with tubulin and the impact of microtubule dynamics and vesicle trafficking were evaluated by protein analyses and live-cell imaging. Correlation analyses via TCGA data complemented the functional studies.</p><p><strong>Results: </strong>We identified transglutaminase 2 (TGM2) as a mediator of T cell suppression in PDAC. We report that high levels of TGM2 expression in patients' tumors correlate with immunosuppressive signatures and poor overall survival. We found that TGM2 regulates vesicle trafficking by modulating microtubule network density and dynamics in pancreatic cancer cells, thus facilitating the secretion of immunosuppressive cytokines, which impair effector T cell functionality. In TGM2-expressing PDOs, pharmacological TGM2 inhibition or treatment with nocodazole increased T cell-mediated apoptosis. Also, pretreatment of TGM2<sup>high</sup> PDOs with sublethal doses of the spindle poisons paclitaxel or vincristine increased CD8+T cell activation and sensitized PDOs toward T cell-mediated cytotoxicity.</p><p><strong>Conclusions: </strong>These findings indicate that targeting microtubular function therapeutically may enhance antitumor T cell responses by impacting activity of immunosuppressive cytokines in the PDAC microenvironment.</p>\",\"PeriodicalId\":14820,\"journal\":{\"name\":\"Journal for Immunotherapy of Cancer\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748943/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for Immunotherapy of Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/jitc-2024-010579\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2024-010579","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Pancreatic cancer cell-intrinsic transglutaminase-2 promotes T cell suppression through microtubule-dependent secretion of immunosuppressive cytokines.
Background: Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.
Methods: We used an unbiased screening approach of T cell resistant and sensitive murine KPC (KrasLSL-G12D/+; Trp53fl/fl; Ptf1aCre/+ ) PDAC cells in a three-dimensional co-culture platform with syngeneic antigen-educated T cells to identify potential cell-intrinsic drivers of T cell suppression in PDAC. Comparative transcriptomic analysis was performed to reveal promising candidates that mediate resistance to T cells. We investigated their contribution by shRNA-mediated knockdown and pharmacological inhibition in murine in vitro and in vivo studies, as well as in patient-derived organoids (PDOs). A combination of transcriptomic analyses, cytometric and immunohistochemistry techniques allowed us to validate the underlying T cell response phenotypes of PDAC cells. The action of TGM2 via interaction with tubulin and the impact of microtubule dynamics and vesicle trafficking were evaluated by protein analyses and live-cell imaging. Correlation analyses via TCGA data complemented the functional studies.
Results: We identified transglutaminase 2 (TGM2) as a mediator of T cell suppression in PDAC. We report that high levels of TGM2 expression in patients' tumors correlate with immunosuppressive signatures and poor overall survival. We found that TGM2 regulates vesicle trafficking by modulating microtubule network density and dynamics in pancreatic cancer cells, thus facilitating the secretion of immunosuppressive cytokines, which impair effector T cell functionality. In TGM2-expressing PDOs, pharmacological TGM2 inhibition or treatment with nocodazole increased T cell-mediated apoptosis. Also, pretreatment of TGM2high PDOs with sublethal doses of the spindle poisons paclitaxel or vincristine increased CD8+T cell activation and sensitized PDOs toward T cell-mediated cytotoxicity.
Conclusions: These findings indicate that targeting microtubular function therapeutically may enhance antitumor T cell responses by impacting activity of immunosuppressive cytokines in the PDAC microenvironment.
期刊介绍:
The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.