Mohammad Taufeeq, Arunabh Choudhury, Afzal Hussain, Mohamed F Alajmi, Taj Mohammad, Anas Shamsi, Md Imtaiyaz Hassan
{"title":"从天然产物中发现潜在的ERK1抑制剂,用于治疗阿尔茨海默病。","authors":"Mohammad Taufeeq, Arunabh Choudhury, Afzal Hussain, Mohamed F Alajmi, Taj Mohammad, Anas Shamsi, Md Imtaiyaz Hassan","doi":"10.1177/13872877241309592","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Extracellular signal-regulated kinase 1 (ERK1) belongs to mitogen-activated protein kinases, which are essential for memory formation, cognitive function, and synaptic plasticity. During Alzheimer's disease (AD), ERK1 phosphorylates tau at 15 phosphorylation sites, leading to the formation of neurofibrillary tangles. The overactivation of ERK1 in microglia promotes the release of pro-inflammatory cytokines, which results in neuroinflammation. Additionally, elevated oxidative stress during AD stimulates the ERK1 pathway, leading to neuronal loss.</p><p><strong>Objective: </strong>Because ERK1 signaling plays a significant role in tau phosphorylation, targeting ERK1 may be therapeutically beneficial by either preventing excessive activation of the signaling pathway or altering its pathway to enhance neuroprotective effects during AD.</p><p><strong>Methods: </strong>This study employed structure-based virtual screening of phytoconstituents from the IMPPAT library. Subsequently, in-depth docking and molecular dynamics (MD) simulation studies were implemented to identify potential ERK1 inhibitors with desirable pharmacological properties.</p><p><strong>Results: </strong>Silandrin and Hydroxytuberosone were found to be potential ERK1 inhibitors with higher affinity and specificity than the control molecule Tizaterkib. These compounds specifically bind to the ERK1 substrate binding pocket and interact with crucial residues. Finally, the elucidated compounds with ERK1 were evaluated using an all-atom molecular MD simulation to analyze structural dynamics, structural compactness, hydrogen bond dynamics, principal component analysis, and free energy landscape.</p><p><strong>Conclusions: </strong>The study suggested that Silandrin and Hydroxytuberosone can further be exploited as potential lead molecules for therapeutic development against ERK1-mediated AD.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":" ","pages":"13872877241309592"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering potential ERK1 inhibitors from natural products for therapeutic targeting of Alzheimer's disease.\",\"authors\":\"Mohammad Taufeeq, Arunabh Choudhury, Afzal Hussain, Mohamed F Alajmi, Taj Mohammad, Anas Shamsi, Md Imtaiyaz Hassan\",\"doi\":\"10.1177/13872877241309592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Extracellular signal-regulated kinase 1 (ERK1) belongs to mitogen-activated protein kinases, which are essential for memory formation, cognitive function, and synaptic plasticity. During Alzheimer's disease (AD), ERK1 phosphorylates tau at 15 phosphorylation sites, leading to the formation of neurofibrillary tangles. The overactivation of ERK1 in microglia promotes the release of pro-inflammatory cytokines, which results in neuroinflammation. Additionally, elevated oxidative stress during AD stimulates the ERK1 pathway, leading to neuronal loss.</p><p><strong>Objective: </strong>Because ERK1 signaling plays a significant role in tau phosphorylation, targeting ERK1 may be therapeutically beneficial by either preventing excessive activation of the signaling pathway or altering its pathway to enhance neuroprotective effects during AD.</p><p><strong>Methods: </strong>This study employed structure-based virtual screening of phytoconstituents from the IMPPAT library. Subsequently, in-depth docking and molecular dynamics (MD) simulation studies were implemented to identify potential ERK1 inhibitors with desirable pharmacological properties.</p><p><strong>Results: </strong>Silandrin and Hydroxytuberosone were found to be potential ERK1 inhibitors with higher affinity and specificity than the control molecule Tizaterkib. These compounds specifically bind to the ERK1 substrate binding pocket and interact with crucial residues. Finally, the elucidated compounds with ERK1 were evaluated using an all-atom molecular MD simulation to analyze structural dynamics, structural compactness, hydrogen bond dynamics, principal component analysis, and free energy landscape.</p><p><strong>Conclusions: </strong>The study suggested that Silandrin and Hydroxytuberosone can further be exploited as potential lead molecules for therapeutic development against ERK1-mediated AD.</p>\",\"PeriodicalId\":14929,\"journal\":{\"name\":\"Journal of Alzheimer's Disease\",\"volume\":\" \",\"pages\":\"13872877241309592\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alzheimer's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/13872877241309592\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877241309592","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Discovering potential ERK1 inhibitors from natural products for therapeutic targeting of Alzheimer's disease.
Background: Extracellular signal-regulated kinase 1 (ERK1) belongs to mitogen-activated protein kinases, which are essential for memory formation, cognitive function, and synaptic plasticity. During Alzheimer's disease (AD), ERK1 phosphorylates tau at 15 phosphorylation sites, leading to the formation of neurofibrillary tangles. The overactivation of ERK1 in microglia promotes the release of pro-inflammatory cytokines, which results in neuroinflammation. Additionally, elevated oxidative stress during AD stimulates the ERK1 pathway, leading to neuronal loss.
Objective: Because ERK1 signaling plays a significant role in tau phosphorylation, targeting ERK1 may be therapeutically beneficial by either preventing excessive activation of the signaling pathway or altering its pathway to enhance neuroprotective effects during AD.
Methods: This study employed structure-based virtual screening of phytoconstituents from the IMPPAT library. Subsequently, in-depth docking and molecular dynamics (MD) simulation studies were implemented to identify potential ERK1 inhibitors with desirable pharmacological properties.
Results: Silandrin and Hydroxytuberosone were found to be potential ERK1 inhibitors with higher affinity and specificity than the control molecule Tizaterkib. These compounds specifically bind to the ERK1 substrate binding pocket and interact with crucial residues. Finally, the elucidated compounds with ERK1 were evaluated using an all-atom molecular MD simulation to analyze structural dynamics, structural compactness, hydrogen bond dynamics, principal component analysis, and free energy landscape.
Conclusions: The study suggested that Silandrin and Hydroxytuberosone can further be exploited as potential lead molecules for therapeutic development against ERK1-mediated AD.
期刊介绍:
The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.