{"title":"刺芒柄花素作为一种新型天然药物在阿尔茨海默病和骨质疏松共病中的潜在作用。","authors":"Zhigang Wang, Qiaoyi Liang, Zhaoqiu Lin, Hongyang Li, Xin Chen, Zhenyou Zou, Jingxin Mo","doi":"10.1177/13872877241299104","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The growing aging population has led to an increase in the prevalence of Alzheimer's disease (AD) and osteoporosis (OP), both of which significantly impair quality of life. The comorbid nature of these conditions suggests a shared genetic etiology, the understanding of which is crucial for developing targeted therapies.</p><p><strong>Objective: </strong>This study aims to explore the shared genetic etiology underlying AD and OP, using a system biology approach to identify potential therapeutic targets and natural compounds for treatment.</p><p><strong>Methods: </strong>We employed Weighted Gene Co-Expression Network Analysis (WGCNA) with molecular docking strategies to uncover the genetic links between AD and OP. MT2A and CACNA1C were identified as key pleiotropic hub genes potentially linking AD and OP. Molecular docking was utilized to screen for compounds with therapeutic potential, leading to the identification of formononetin as a compound with significant binding affinity to these hub genes. Quantitative real-time PCR (qRT-PCR) validation was conducted to confirm the gene expression changes in disease models.</p><p><strong>Results: </strong>Our study indicate that formononetin exhibits strong binding affinity to the identified hub genes, MT2A and CACNA1C. qRT-PCR validation confirmed the upregulation of these genes in disease models, which was mitigated upon treatment with formononetin, suggesting a reversal of disease markers.</p><p><strong>Conclusions: </strong>This study advances our understanding of the genetic intersections between AD and OP and positions formononetin as a promising natural agent for further translational research. Formononetin's multi-target potential makes it a valuable candidate for managing these comorbid conditions, meriting further investigation and development as a therapeutic strategy.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":" ","pages":"13872877241299104"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential role of formononetin as a novel natural agent in Alzheimer's disease and osteoporosis comorbidity.\",\"authors\":\"Zhigang Wang, Qiaoyi Liang, Zhaoqiu Lin, Hongyang Li, Xin Chen, Zhenyou Zou, Jingxin Mo\",\"doi\":\"10.1177/13872877241299104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The growing aging population has led to an increase in the prevalence of Alzheimer's disease (AD) and osteoporosis (OP), both of which significantly impair quality of life. The comorbid nature of these conditions suggests a shared genetic etiology, the understanding of which is crucial for developing targeted therapies.</p><p><strong>Objective: </strong>This study aims to explore the shared genetic etiology underlying AD and OP, using a system biology approach to identify potential therapeutic targets and natural compounds for treatment.</p><p><strong>Methods: </strong>We employed Weighted Gene Co-Expression Network Analysis (WGCNA) with molecular docking strategies to uncover the genetic links between AD and OP. MT2A and CACNA1C were identified as key pleiotropic hub genes potentially linking AD and OP. Molecular docking was utilized to screen for compounds with therapeutic potential, leading to the identification of formononetin as a compound with significant binding affinity to these hub genes. Quantitative real-time PCR (qRT-PCR) validation was conducted to confirm the gene expression changes in disease models.</p><p><strong>Results: </strong>Our study indicate that formononetin exhibits strong binding affinity to the identified hub genes, MT2A and CACNA1C. qRT-PCR validation confirmed the upregulation of these genes in disease models, which was mitigated upon treatment with formononetin, suggesting a reversal of disease markers.</p><p><strong>Conclusions: </strong>This study advances our understanding of the genetic intersections between AD and OP and positions formononetin as a promising natural agent for further translational research. Formononetin's multi-target potential makes it a valuable candidate for managing these comorbid conditions, meriting further investigation and development as a therapeutic strategy.</p>\",\"PeriodicalId\":14929,\"journal\":{\"name\":\"Journal of Alzheimer's Disease\",\"volume\":\" \",\"pages\":\"13872877241299104\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alzheimer's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/13872877241299104\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877241299104","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Potential role of formononetin as a novel natural agent in Alzheimer's disease and osteoporosis comorbidity.
Background: The growing aging population has led to an increase in the prevalence of Alzheimer's disease (AD) and osteoporosis (OP), both of which significantly impair quality of life. The comorbid nature of these conditions suggests a shared genetic etiology, the understanding of which is crucial for developing targeted therapies.
Objective: This study aims to explore the shared genetic etiology underlying AD and OP, using a system biology approach to identify potential therapeutic targets and natural compounds for treatment.
Methods: We employed Weighted Gene Co-Expression Network Analysis (WGCNA) with molecular docking strategies to uncover the genetic links between AD and OP. MT2A and CACNA1C were identified as key pleiotropic hub genes potentially linking AD and OP. Molecular docking was utilized to screen for compounds with therapeutic potential, leading to the identification of formononetin as a compound with significant binding affinity to these hub genes. Quantitative real-time PCR (qRT-PCR) validation was conducted to confirm the gene expression changes in disease models.
Results: Our study indicate that formononetin exhibits strong binding affinity to the identified hub genes, MT2A and CACNA1C. qRT-PCR validation confirmed the upregulation of these genes in disease models, which was mitigated upon treatment with formononetin, suggesting a reversal of disease markers.
Conclusions: This study advances our understanding of the genetic intersections between AD and OP and positions formononetin as a promising natural agent for further translational research. Formononetin's multi-target potential makes it a valuable candidate for managing these comorbid conditions, meriting further investigation and development as a therapeutic strategy.
期刊介绍:
The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.